Find the measure of angle

Geometry Level 3

A B C \triangle ABC has sides A C = B C AC=BC and A C B = 9 6 \angle ACB = 96^\circ . D D is a point in A B C \triangle ABC such that D A B = 1 8 \angle DAB = 18^\circ and D B A = 3 0 \angle DBA=30^\circ . What is the measure (in degrees) of A C D \angle ACD ?


The answer is 78.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 13, 2018

All the known and deducible measures of angle are shown in the figure. Let A D C = θ \angle ADC = \theta . Then by sine rule, we have

{ A C C D = sin A D C sin C A D B C C D = sin A D B sin C B D \begin{cases} \dfrac {AC}{CD} = \dfrac {\sin \angle ADC}{\sin \angle CAD} \\ \dfrac {BC}{CD} = \dfrac {\sin \angle ADB}{\sin \angle CBD} \end{cases} .

Since A C = B C AC=BC , we have:

sin A D C sin C A D = sin A D B sin C B D sin θ sin 2 4 = sin ( 22 8 θ ) sin 1 2 Note that sin ( 2 x ) = 2 sin x cos x sin θ 2 = cos 1 2 sin ( θ 4 8 ) Since sin ( 18 0 x ) = sin x sin 3 0 sin θ = sin 7 8 sin ( θ 4 8 ) Assuming θ 4 8 = 3 0 θ = 7 8 sin θ = sin 7 8 proving that the assumption is correct. θ = 7 8 \begin{aligned} \frac {\sin \angle ADC}{\sin \angle CAD} & = \frac {\sin \angle ADB}{\sin \angle CBD} \\ \frac {\sin \theta}{\color{#3D99F6}\sin 24^\circ} & = \frac {\color{#D61F06}\sin (228^\circ - \theta)}{\sin 12^\circ} & \small \color{#3D99F6} \text{Note that }\sin (2x) = 2\sin x \cos x \\ \frac {\sin \theta}{\color{#3D99F6}2} & = \color{#3D99F6}\cos 12^\circ \color{#D61F06} \sin (\theta - 48^\circ) & \small \color{#D61F06} \text{Since }\sin (180^\circ - x) = \sin x \\ {\color{#3D99F6}\sin 30^\circ} \sin \theta & = {\sin 78^\circ} \sin (\theta - 48^\circ) & \small \color{#3D99F6} \text{Assuming } \theta - 48^\circ = 30^\circ \implies \theta = 78^\circ \\ \sin \theta & = \sin 78^\circ & \small \color{#3D99F6} \text{proving that the assumption is correct.} \\ \implies \theta & = 78^\circ \end{aligned}

Therefore, A C D = 18 0 C A D A D C = 18 0 2 4 7 8 = 78 \angle ACD = 180^\circ - \angle CAD - \angle ADC = 180^\circ - 24^\circ - 78^\circ = \boxed{78}^\circ .

Jeremy Galvagni
Jul 12, 2018

Aly, feel free to take this image and add it to your problem.

Since A B C \triangle ABC is isosceles A B C = B A C = 42 \angle ABC=\angle BAC=42 and we can easily derive D A C = 24 \angle DAC=24 and A D B = 132 \angle ADB=132

For simplicity let A C = B C = 1 AC=BC=1 then by the law of sines on A C B \triangle ACB , A B = sin 96 sin 42 = sin 84 sin 42 = 2 sin 42 cos 42 sin 42 = 2 cos 42 = 2 sin 48 AB=\frac{\sin{96}}{\sin{42}}=\frac{\sin{84}}{\sin{42}}=\frac{2\sin{42}\cos{42}}{\sin{42}}=2\cos{42}=2\sin{48} .

Now using the law of sines on A D B \triangle ADB , A D sin 30 = 2 sin 48 sin 132 \frac{AD}{\sin{30}}=\frac{2\sin{48}}{\sin{132}} , A D = sin 48 sin 132 = sin 48 sin 48 = 1 AD=\frac{\sin48}{\sin{132}}=\frac{\sin{48}}{\sin{48}}=1

So A D C \triangle ADC is isosceles. D A C = 42 18 = 24 \angle DAC=42-18=24 and A C D = 180 24 2 = 78 \angle ACD = \frac{180-24}{2}=\boxed{78}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...