Find the measure of B

Geometry Level 3

Find the measure of angle B B in degrees.


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Jan 12, 2018

Let A B D = x . \angle ABD = x^{\circ}. By the Law of Sines,

A D B D = sin x sin ( 150 x ) A D A C = sin 2 0 sin 15 0 . \begin{aligned} \dfrac{AD}{BD} &= \dfrac{\sin x^{\circ}}{\sin (150 - x)^{\circ}} \\ \dfrac{AD}{AC} &= \dfrac{\sin 20^{\circ}}{\sin 150^{\circ}}. \end{aligned}

Since A C = B D , AC = BD, we have

A D B D = A D A C sin x sin ( 150 x ) = sin 2 0 sin 15 0 sin x sin ( x + 30 ) = 2 sin 2 0 sin x sin ( x + 30 ) = sin 4 0 cos 2 0 sin x sin ( x + 30 ) = sin 4 0 sin 7 0 x = 40 . \begin{aligned} \dfrac{AD}{BD} &= \dfrac{AD}{AC} \\ \dfrac{\sin x^{\circ}}{\sin (150 - x)^{\circ}} &= \dfrac{\sin 20^{\circ}}{\sin 150^{\circ}} \\ \dfrac{\sin x^{\circ}}{\sin (x + 30)^{\circ}} &= 2 \sin 20^{\circ} \\ \dfrac{\sin x^{\circ}}{\sin (x + 30)^{\circ}} &= \dfrac{\sin 40^{\circ}}{\cos 20^{\circ}} \\ \dfrac{\sin x^{\circ}}{\sin (x + 30)^{\circ}} &= \dfrac{\sin 40^{\circ}}{\sin 70^{\circ}} \\ x &= \boxed{40}. \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...