find the min of

Algebra Level 3

Positive reals x x , y y , and z z are such that x y z = x + y + z + 2 xyz=x+y+z+2 . Find the minimum value of x 2 + y 2 + z 2 x^2+y^2+z^2 .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From A.M.-G.M. inequality for positive values of x , y x\,,\,y\, and z z , we have

x + y + z 3 \Large\frac{x + y + z}{3}\, x y z 3 \geq \,\sqrt[3]{xyz}

( x + y + z ) 3 27 \Rightarrow \Large\frac{(x + y + z)^3}{27}\, x y z = x + y + z + 2 \geq\, xyz = x + y + z + 2

( x + y + z ) 3 27 ( x + y + z + 2 ) ( x + y + z ) 3 27 ( x + y + z ) 54 0 \Rightarrow (x + y + z)^3 \geq 27(x + y + z + 2)\newline\Rightarrow (x + y + z)^3 - 27(x + y + z) - 54 \geq 0

Let x + y + z = c x + y + z = c . Then

c 3 27 c 54 0 ( c + 3 ) 2 ( c 6 ) 0 c 6 0 c 6 x + y + z 6 x y z 2 6 x y z 8 c^3 - 27c - 54 \geq 0\newline\Rightarrow (c + 3)^2(c - 6) \geq 0\newline \Rightarrow c - 6 \geq 0\newline\Rightarrow c \geq 6\newline \Rightarrow x + y + z \geq 6\newline \Rightarrow xyz - 2 \geq 6\newline \Rightarrow xyz \geq 8

Now applying A.M.-G.M. inequality on positive numbers x 2 , y 2 x^2\,,\,y^2\, and z 2 \,z^2

x 2 + y 2 + z 2 3 \Large\frac{x^2 + y^2 + z^2}{3}\, x 2 y 2 z 2 3 \geq \sqrt[3]{x^2y^2z^2}

x 2 + y 2 + z 2 3 ( x y z ) 2 3 3 8 2 3 = 3 64 3 = 3 4 = 12 \Rightarrow x^2 + y^2 + z^2 \,\geq\, 3\sqrt[3]{(xyz)^2} \,\geq\, 3\sqrt[3]{8^2} = 3\sqrt[3]{64} = 3\cdot 4 = 12

x 2 + y 2 + z 2 12 \Rightarrow x^2 + y^2 + z^2 \geq 12

Hence min ( x 2 + y 2 + z 2 ) = 12 \text{min}(x^2 + y^2 + z^2) = 12 and equality occurs at x = y = z = 2 x = y = z = 2

Great solution!

Chris Lewis - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...