Positive reals , , and are such that . Find the minimum value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From A.M.-G.M. inequality for positive values of x , y and z , we have
3 x + y + z ≥ 3 x y z
⇒ 2 7 ( x + y + z ) 3 ≥ x y z = x + y + z + 2
⇒ ( x + y + z ) 3 ≥ 2 7 ( x + y + z + 2 ) ⇒ ( x + y + z ) 3 − 2 7 ( x + y + z ) − 5 4 ≥ 0
Let x + y + z = c . Then
c 3 − 2 7 c − 5 4 ≥ 0 ⇒ ( c + 3 ) 2 ( c − 6 ) ≥ 0 ⇒ c − 6 ≥ 0 ⇒ c ≥ 6 ⇒ x + y + z ≥ 6 ⇒ x y z − 2 ≥ 6 ⇒ x y z ≥ 8
Now applying A.M.-G.M. inequality on positive numbers x 2 , y 2 and z 2
3 x 2 + y 2 + z 2 ≥ 3 x 2 y 2 z 2
⇒ x 2 + y 2 + z 2 ≥ 3 3 ( x y z ) 2 ≥ 3 3 8 2 = 3 3 6 4 = 3 ⋅ 4 = 1 2
⇒ x 2 + y 2 + z 2 ≥ 1 2
Hence min ( x 2 + y 2 + z 2 ) = 1 2 and equality occurs at x = y = z = 2