find the min of

Algebra Level 2

For positive reals a a , b b , and c c , find the minimum value of the expression below.

( a + 1 b ) ( b + 1 c ) ( c + 1 a ) \left(a+\frac 1b\right)\left(b+\frac 1c\right)\left(c+\frac 1a\right)


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Cantdo Math
Apr 21, 2020

Simply applying AM-GM inequality,we get

( a + 1 b ) ( b + 1 c ) ( c + 1 a ) ( 2 a b 2 b c 2 c a ) (a+\frac{1}{b})(b+\frac{1}{c})(c+\frac{1}{a}) \ge (2\sqrt{\frac{a}{b}}*2\sqrt{\frac{b}{c}}*2\sqrt{\frac{c}{a}})

which results in 8 \ge 8 .Hence 8 is the answer.

Chew-Seong Cheong
Apr 21, 2020

Applying Hölder's inequality and then AM-GM inequality :

( a + 1 b ) ( b + 1 c ) ( c + 1 a ) ( a b c + 1 a b c ) 3 ( 2 a b c a b c ) 3 = 2 3 = 8 \left(a+\frac 1b\right)\left(b+\frac 1c\right)\left(c+\frac 1a\right) \ge \left(abc + \frac 1{abc} \right)^3 \ge \left(2\sqrt{\frac {abc}{abc}}\right)^3 = 2^3 = \boxed 8

Equality occurs when a = b = c = 1 a=b=c=1 .

( a + 1 b ) + ( b + 1 c ) + ( c + 1 a ) = ( a b c + 1 a b c ) + ( a + b + c ) + ( 1 a + 1 b + 1 c ) (a+\dfrac{1}{b})+(b+\dfrac{1}{c})+(c+\dfrac{1}{a})=\left (abc+\dfrac{1}{abc}\right )+(a+b+c)+\left (\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right ) .

Now,

a b c + 1 a b c 2 abc+\dfrac{1}{abc}\geq 2 (A. M.-G. M. inequality) .

( a + b + c ) + ( 1 a + 1 b + 1 c ) 2 ( a + b + c ) ( 1 a + 1 b + 1 c ) (a+b+c)+\left (\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right ) \geq 2\sqrt {(a+b+c)\left (\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right ) } (A. M.-G. M. inequality) , 2 9 = 6 \geq 2\sqrt 9=6 (A. M.-H. M. inequality)

So the minimum of the given expression is 2 + 6 = 8 2+6=\boxed 8 .

Richard Desper
Apr 21, 2020

Lemma: First, consider the function f ( x ) = x + 1 x f(x) = x + \frac{1}{x} . The minimum value of this function, for x R + , x \in \mathbb{R}^{+}, is found at x = 1 x=1 , where f ( x ) = 2 f(x) = 2 .

(This is an easy fact to note considering the behavior of f ( x ) = 1 1 x 2 . ) f'(x) = 1 - \frac{1}{x^2}.)

Now expand the expression above:

( a + 1 b ) ( b + 1 c ) ( c + 1 a ) = (a + \frac{1}{b})(b + \frac{1}{c})(c + \frac{1}{a}) =

a b c + a + b + c + 1 a + 1 b + 1 c + 1 a b c = abc + a + b + c + \frac{1}{a} + \frac{1}{b} +\frac{1}{c} + \frac{1}{abc} =

( a + 1 a ) + ( b + 1 b ) + ( c + 1 c ) + ( a b c + 1 a b c ) (a + \frac{1}{a}) + (b + \frac{1}{b}) + (c + \frac{1}{c}) + (abc + \frac{1}{abc} )

\geq (by Lemma) 2 + 2 + 2 + 2 = 8. 2 + 2 + 2 +2 = 8.

And the minimum is achieved at a = b = c = 1 a=b=c=1 .

Elijah L
Apr 21, 2020

Expanding, we get the expression a b c + a + b + c + 1 a + 1 b + 1 c + 1 a b c \displaystyle abc + a + b + c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{abc} .

We re-arrange this to get the expression a b c + 1 a b c + a + 1 a + b + 1 b + c + 1 c \displaystyle abc + \frac{1}{abc} + a + \frac{1}{a} + b + \frac{1}{b} + c + \frac{1}{c} .

Then, we apply AM-GM. In general, for positive reals (which is the domain stated in the question):

k + 1 k 2 k × 1 k \displaystyle \frac{k + \frac{1}{k}}{2} \ge \sqrt{k \times \frac{1}{k}}

k + 1 k 2 \displaystyle k + \frac{1}{k} \ge 2

We apply this logic to our equation, and the minimum value of it is 8 \boxed{8} . Equality occurs when a = b = c = 1 a = b = c = 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...