find the min of

Calculus Level 3

sin 4 x + 3 2 cos 4 x \large \sin^4 x + \frac 32 \cos^4 x

Find the minimum value of the expression above.


The answer is 0.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Aareyan Manzoor
Jul 29, 2019

There are many approaches to this problem, as such i will share 2 approaches.

Cauchy-Swartz: ( 1 + 2 3 ) ( sin 4 ( x ) + 3 2 cos 4 ( x ) ) ( sin 2 ( x ) + cos 2 ( x ) ) 2 sin 4 ( x ) + 3 2 cos 4 ( x ) 3 5 \left(1+\dfrac{2}{3}\right)\left(\sin^4 (x)+\dfrac{3}{2} \cos^4(x)\right)\geq \left(\sin^2 (x) +\cos^2(x)\right)^2 \to \sin^4 (x)+\dfrac{3}{2} \cos^4(x)\geq \boxed{\dfrac{3}{5}} the equality case being when sin 4 ( x ) 1 = 3 2 cos 4 ( x ) 2 / 3 sin 2 ( x ) = 3 5 \dfrac{\sin^4(x)}{1} =\dfrac{ \dfrac{3}{2} \cos^4(x)}{2/3}\to \sin^2 (x) = \dfrac{3}{5}

quadratic

we can write this as ( sin 2 ( x ) ) 2 + 3 2 ( 1 sin 2 ( x ) ) 2 = 5 2 ( sin 2 ( x ) 3 5 ) 2 + 3 5 \left(\sin^2(x)\right)^2 +\dfrac{3}{2} \left(1-\sin^2(x)\right)^2 = \dfrac{5}{2} \left(\sin^2(x)-\dfrac{3}{5} \right)^2+\boxed{\dfrac{3}{5}} and this is minimized when sin 2 ( x ) 3 5 = 0 \sin^2(x)-\dfrac{3}{5}=0

We have f ( x ) = sin 4 ( x ) + 3 2 cos 4 ( x ) f\left(x\right) = \sin ^{4} \left( x \right) + \frac{3}{2}\cos ^{4} \left( x \right) we take the derivative which yields f ( x ) = 4 sin 3 ( x ) cos ( x ) + 6 cos 3 ( x ) ( sin ( x ) ) f'\left(x\right) = 4\sin ^{3} \left( x \right) \cos \left( x \right) + 6\cos ^{3} \left( x \right) \left( - \sin \left( x \right) \right) Though we can factor right hand side so we have sin ( x ) cos ( x ) ( 4 sin 2 ( x ) 6 cos 2 ( x ) ) \sin \left( x \right) \cos \left( x \right) \left( 4\sin ^2 \left( x \right) - 6\cos ^2 \left( x \right) \right) But we can factor a 2 out to get 2 sin ( x ) cos ( x ) ( 2 sin 2 ( x ) 3 cos 2 ( x ) ) 2\sin \left( x \right) \cos \left( x \right) \left( 2\sin ^2 \left( x \right) - 3\cos ^2 \left( x \right) \right) recall the identity sin ( 2 x ) = 2 sin ( x ) cos ( x ) \sin \left( 2x \right) = 2\sin \left( x \right) \cos \left( x \right) and sin 2 ( x ) + cos 2 ( x ) = 1 3 cos ( x ) = 3 sin 2 ( x ) 3 \sin ^2 \left( x \right) + \cos ^2 \left( x \right) = 1\Leftrightarrow - 3\cos \left( x \right) = 3\sin ^2 \left( x \right) - 3 so we have f ( x ) = sin ( 2 x ) ( 5 sin 2 ( x ) 3 ) f'\left(x\right) = \sin \left( 2x \right) \left( 5\sin ^2 \left( x \right) -3 \right) solutions are when x = 0 and sin 2 ( x ) = 3 5 x= 0\text{ and } \sin ^2 \left( x \right) = \frac{3}{5} . We check whether they are minimum or maximum points by analyzing the second derivative. We have f ( x ) = cos ( 2 x ) 2 ( 5 sin 2 ( x ) 3 ) + sin ( 2 x ) ( 10 sin ( x ) cos ( x ) ) f''\left(x\right) = \cos \left( 2x \right) 2\left( 5\sin ^2 \left( x \right) -3 \right) + \sin \left( 2x \right) \left( 10\sin \left( x \right) \cos \left( x \right) \right) We have f ( 0 ) = 6 f''\left(0\right)= -6 which means this is a maximum thus the minimum must be at sin 2 ( x ) = 3 5 \sin ^2 \left( x \right) = \frac{3}{5} , thus we go back to the original equation which is f ( x ) = ( sin 2 ( x ) ) 2 + 3 2 ( 1 sin 2 ( x ) ) 2 f\left(x\right) = \left( \sin ^2 \left( x \right) \right) ^{2} + \frac{3}{2}\left( 1 - \sin ^2 \left( x \right) \right) ^{2} evaluating when sin 2 ( x ) = 3 5 \sin ^2 \left( x \right) = \frac{3}{5} we get ( 3 5 ) 2 + 3 2 ( 1 3 5 ) 2 = 9 25 + 6 25 = 15 25 = 60 100 = 0.6 \left( \frac{3}{5} \right) ^2 + \frac{3}{2}\left( 1 - \frac{3}{5} \right) ^2 = \frac{9}{25} + \frac{6}{25}= \frac{15}{25}= \frac{60}{100}= \boxed{0.6}

I did it just right this

José Antonio Fuentes - 1 year, 3 months ago

( sin 4 ( x ) + 3 cos 4 ( x ) 2 ) x 4 sin 3 ( x ) cos ( x ) 6 sin ( x ) cos 3 ( x ) \frac{\partial \left(\sin ^4(x)+\frac{3 \cos ^4(x)}{2}\right)}{\partial x} \Rightarrow 4 \sin ^3(x) \cos (x)-6 \sin (x) \cos ^3(x)

Solve 4 sin 3 ( x ) cos ( x ) 6 sin ( x ) cos 3 ( x ) = 0 4 \sin ^3(x) \cos (x)-6 \sin (x) \cos ^3(x)=0 for the principal values (they repeat every 2 π 2\pi ): x 0 x π 2 x π 2 x π x tan 1 ( 3 2 ) x π tan 1 ( 3 2 ) x tan 1 ( 3 2 ) x tan 1 ( 3 2 ) π \begin{array}{l} x\to 0 \\ x\to -\frac{\pi }{2} \\ x\to \frac{\pi }{2} \\ x\to \pi \\ x\to -\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right) \\ x\to \pi -\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right) \\ x\to \tan ^{-1}\left(\sqrt{\frac{3}{2}}\right) \\ x\to \tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)-\pi \\ \end{array}

Evaluating sin 4 ( x ) + 3 cos 4 ( x ) 2 \sin ^4(x)+\frac{3 \cos ^4(x)}{2} at those values of x x gives: 3 2 , 1 , 1 , 3 2 , 3 5 , 3 5 , 3 5 , 3 5 \frac{3}{2},1,1,\frac{3}{2},\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}

This are the minima, maxima and saddle points.

( sin 4 ( x ) + 3 cos 4 ( x ) 2 ) x x 4 sin 4 ( x ) 6 cos 4 ( x ) + 30 sin 2 ( x ) cos 2 ( x ) \frac{\partial \frac{\partial \left(\sin ^4(x)+\frac{3 \cos ^4(x)}{2}\right)}{\partial x}}{\partial x} \Rightarrow -4 \sin ^4(x)-6 \cos ^4(x)+30 \sin ^2(x) \cos ^2(x)

Evaluating sgn ( 4 sin 4 ( x ) 6 cos 4 ( x ) + 30 sin 2 ( x ) cos 2 ( x ) ) \text{sgn}\left(-4 \sin ^4(x)-6 \cos ^4(x)+30 \sin ^2(x) \cos ^2(x)\right) gives { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 } \{-1,-1,-1,-1,1,1,1,1\} .

The 1 -1 values are maxima. The 1 1 values are minima. If 0 0 values had occurred, then those would have to be checked further and probably would be saddle points.

The minimum is 3 5 \frac35 .

In general when we have problems like this and 3/2 can be expressed as a/b then the minimum value is a/(a+b)

If the number were switched and it was 2/3 then the answer would have been 0.4

Vijay Simha - 1 year, 10 months ago

Solve 4 sin 3 ( x ) cos ( x ) 6 sin ( x ) cos 3 ( x ) = 0 4 \sin ^3(x) \cos (x)-6 \sin (x) \cos ^3(x)=0 for the principal values (they repeat every 2 π 2\pi ):

Hi Randolph, the fundamental period of the function sin 4 x + 3 2 cos 4 x \sin^4 x + \frac32 \cos^4 x is π \pi , not 2 π 2\pi . So you don't have to check that many values of x x .

Pi Han Goh - 1 year, 10 months ago

You are correct. I checked 2 π 2\pi to verify that and did not change the test range afterwards.

A Former Brilliant Member - 1 year, 10 months ago

Log in to reply

Of course, is there a clean (non-graphical) way to prove that the function in question has a fundamental period of π \pi ?

Pi Han Goh - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...