Find min.

Algebra Level 3

Find the minimum value of x 2 2 x y + 2 y 2 + 2 x 6 y x^2-2xy+2y^2+2x-6y , where x x and y y are real.


The answer is -5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

f ( x , y ) = x 2 2 x y + 2 y 2 + 2 x 6 y Note that ( x y + 1 ) 2 = x 2 + y 2 + 1 + 2 ( x y y + x ) = ( x y + 1 ) 2 + y 2 4 y 1 and ( y 2 ) 2 = y 2 4 y + 4 = ( ( x 1 ) ( y 2 ) ) 2 + ( y 2 ) 2 5 \begin{aligned} f(x,y) & = x^2-2xy+2y^2 + 2x - 6y & \small \blue{\text{Note that }(x-y+1)^2 = x^2 + y^2 + 1 + 2(-xy-y+x)} \\ & = (x-y+1)^2 + y^2 - 4y - 1 & \small \blue{\text{and }(y-2)^2 = y^2-4y+4} \\ & = ((x-1)-(y-2))^2 + (y-2)^2 - 5 \end{aligned}

Note that g ( x , y ) = ( ( x 1 ) ( y 2 ) ) 2 + ( y 2 ) 2 0 g(x,y) = ((x-1)-(y-2))^2 + (y-2)^2 \ge 0 . Therefore, f ( x , y ) f(x,y) is minimum when g ( x , y ) g(x,y) is minimum or g ( x , y ) = 0 g(x,y) = 0 , min ( f ( x , y ) = f ( 1 , 2 ) = 0 5 = 5 \implies \min(f(x,y) = f(1,2) = 0 - 5 = \boxed{-5} .

Callie Ferguson
Apr 3, 2020

f ( x , y ) = x 2 2 x y + 2 y 2 + 2 x 6 y f(x,y)=x^2-2xy+2y^2+2x-6y

The minimum values of x x and y y will satisfy f x = 0 f_x=0 and f y = 0 f_y=0 , or d f d x = 0 \frac{df}{dx}=0 and d f d y = 0 \frac{df}{dy}=0 .

d f d x = 2 x 2 y + 2 = 0 \frac{df}{dx} = 2x-2y+2 = 0

2 y = 2 x + 2 \rightarrow 2y=2x+2

y = x + 1 \rightarrow y=x+1

Simplifying the above equation gives that y = x + 1 y=x+1 , so we can now plug that value into y y in the second equation to solve for x x .

d f d y = 2 x + 4 y 6 = 0 \frac{df}{dy} = -2x+4y-6 = 0

2 x + 4 ( x + 1 ) 6 = 0 \rightarrow -2x+4(x+1)-6=0

4 x + 4 2 x 6 = 0 \rightarrow 4x+4-2x-6=0

2 x = 2 \rightarrow 2x=2

x = 1 \rightarrow x=1

So now that we know that x = 1 x=1 , we can plug that into y = x + 1 y=x+1 to solve for y y .

This gives that y = 2 y=2 and x = 1 x=1 as the minimum values of x x and y y .

Finally, to solve for the minimum value of f ( x , y ) f(x,y) , we just need to plug the values above into the function.

f ( x , y ) = ( 1 ) 2 2 ( 1 ) ( 2 ) + 2 ( 2 ) 2 + 2 ( 1 ) 6 ( 2 ) f(x,y)=(1)^2-2(1)(2)+2(2)^2+2(1)-6(2)

1 4 + 8 + 2 12 = 5 \rightarrow 1-4+8+2-12 = -5

So, the answer is -5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...