find the min value

Algebra Level 2

x 2 y 1 + y 2 x 1 \frac {x^2}{y-1} + \frac {y^2}{x-1}

Find the minimum value of the expression above, where x > 1 x>1 and y > 1 y>1 are real numbers.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let u = x 1 u=x-1 and v = y 1 v=y-1 . Note that u , v > 0 u,v >0 , so Titu's lemma and AM-GM inequality applies.

x 2 y 1 + y 2 x 1 = ( u + 1 ) 2 v + ( v + 1 ) 2 u By Titu’s lemma ( u + 1 ) 2 v + ( v + 1 ) 2 u ( u + v + 2 ) 2 u + v Let z = u + v z 2 + 4 z + 4 z = z + 4 + 4 z z + 4 z + 4 2 4 + 4 = 8 By AM-GM inequality \begin{aligned} \frac {x^2}{y-1} + \frac {y^2}{x-1} & = \blue{\frac {(u+1)^2}v + \frac {(v+1)^2}u} & \small \blue{\text{By Titu's lemma}} \\ \blue{\frac {(u+1)^2}v + \frac {(v+1)^2}u} & \ge \red{\frac {(u+v+2)^2}{u+v}} & \small \red{\text{Let }z=u+v} \\ \red{\frac {z^2 + 4z+4}z} & = z + 4 + \frac 4z \\ \blue{z + \frac 4z} + 4 & \ge \blue{2\sqrt 4} + 4 = \boxed 8 & \small \blue{\text{By AM-GM inequality}} \end{aligned}

Equality occurs when x = y = 2 x=y=2 .

The symmetry of the expression indicates that the expression will attain an optimum when x = y x=y . Then, the optimum value of the expression is 2 x 2 x 1 = c \dfrac{2x^2}{x-1}=c (say). This gives rise to the equation

2 x 2 c x + c = 0 2x^2-cx+c=0 . Since x x is real, therefore c 2 4 × 2 × c c 8 c^2\geq 4\times 2\times c\implies c\geq 8 . Hence the minimum value of the expression is 8 \boxed 8 .

Alternative method :

Let x = a + 1 , y = b + 1 x=a+1, y=b+1 . Then the given expression is a 2 + 2 a + 1 b + b 2 + 2 b + 1 a = ( a 2 b + b 2 a ) + 2 ( a b + b a ) + ( 1 a + 1 b ) \dfrac{a^2+2a+1}{b}+\dfrac{b^2+2b+1}{a}=(\frac{a^2}{b}+\frac{b^2}{a})+2(\frac{a}{b}+\frac{b}{a})+(\frac{1}{a}+\frac{1}{b}) . By A. M. - G. M. inequality, a 2 b + b 2 a 2 a b , a b + b a 2 , 1 a + 1 b 2 a b , a b + 1 a b 2 \frac{a^2}{b}+\frac{b^2}{a}\geq 2\sqrt {ab}, \frac{a}{b}+\frac{b}{a}\geq 2, \frac{1}{a}+\frac{1}{b}\geq \frac{2}{\sqrt {ab}}, \sqrt {ab}+\frac{1}{\sqrt {ab}}\geq 2 . Hence the given expression is 2 × 2 + 2 × 2 = 8 \geq 2\times 2+2\times 2=8 . Therefore the minimum value of the given expression is 8 \boxed 8 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...