An algebra problem by Aly Ahmed

Algebra Level 3

Let x , y , z x,y,z and t t be positive numbers such that x y z t = 1 xyzt = 1 . Find the infimum of the expression below. 1 1 + x + 1 1 + y + 1 1 + z + 1 1 + t \frac1{1+x} + \frac1{1+y} + \frac1{1+z} + \frac1{1+t}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sathvik Acharya
Dec 23, 2020

Claim: The minimum value of the expression 'approaches' 1 1 min ( 1 1 + x + 1 1 + y + 1 1 + z + 1 1 + t ) 1 \text{min}\left (\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\right)\rightarrow 1 Proof: The condition x y z t = 1 xyzt=1 motivates us to make the substitution x = a b , y = b c , z = c d , t = d a x=\frac{a}{b} \;,\;\; y=\frac{b}{c} \;,\;\; z=\frac{c}{d} \;,\;\; t=\frac{d}{a} So the above expression changes to 1 1 + x + 1 1 + y + 1 1 + z + 1 1 + t = b b + a + c c + b + d d + c + a a + d \frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}=\frac{b}{b+a}+\frac{c}{c+b}+\frac{d}{d+c}+\frac{a}{a+d} Let ( a , b , c , d ) = ( k , k , 1 , 1 k ) (a,b,c,d)=\left (k,\sqrt{k},1,\frac{1}{k} \right ) , then when k k becomes very large, b b + a + c c + b + d d + c + a a + d = lim k ( k k + k + 1 1 + k + 1 k + 1 + k 2 k 2 + 1 ) = 1 \frac{b}{b+a}+\frac{c}{c+b}+\frac{d}{d+c}+\frac{a}{a+d}=\lim_{k\rightarrow \infty}\left (\frac{\sqrt{k}}{\sqrt{k}+k}+\frac{1}{1+\sqrt{k}}+\frac{1}{k+1}+\frac{k^2}{k^2+1}\right)=1 So it suffices to show that, for all positive reals b b + a + c c + b + d d + c + a a + d 1 \frac{b}{b+a}+\frac{c}{c+b}+\frac{d}{d+c}+\frac{a}{a+d}\ge 1 Applying Titu's Lemma/Cauchy-Schwarz inequality , c y c b b + a = c y c b 2 b 2 + a b ( a + b + c + d ) 2 a 2 + b 2 + c 2 + d 2 + a b + b c + c d + d a 1 \sum_{cyc}\frac{b}{b+a}=\sum_{cyc}\frac{b^2}{b^2+ab}\ge\frac{(a+b+c+d)^2}{a^2+b^2+c^2+d^2+ab+bc+cd+da}\ge 1 Hence, we have shown that the expression never takes values less than 1 1 . Therefore, inf ( b b + a + c c + b + d d + c + a a + d ) = inf ( 1 1 + x + 1 1 + y + 1 1 + z + 1 1 + t ) = 1 \text{inf}\left( \frac{b}{b+a}+\frac{c}{c+b}+\frac{d}{d+c}+\frac{a}{a+d}\right)=\text{inf}\left (\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\right)= 1

Is the minimum achievable, though? I guess it would be helpful to see the full question.

Chris Lewis - 5 months, 3 weeks ago

I don't think the expression has a minimum value. So you are right, 1 1 can never be achieved, although I have shown that it gets closer and closer to 1 1

Sathvik Acharya - 5 months, 3 weeks ago

Log in to reply

Thanks. I've updated the problem statement to reflect this.

In the future, if you have concerns about a problem's wording/clarity/etc., you can report the problem. See how here .

Brilliant Mathematics Staff - 5 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...