Find the Minimum

Algebra Level 4

Let x , y , z x, y, z , and a a be positive real numbers such that x + y + z + a = 1 x + y + z + a = 1 . What is the minimum value of

1 x + 1 y + 4 z + 16 a \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}+\dfrac{16}{a}


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Yash Singhal
Nov 14, 2014

Let us use Titu's Lemma or Cauchy-Schwartz Inequality in Engel form.

1 x + 1 y + 4 z + 16 a \frac{1}{x}+\frac{1}{y}+\frac{4}{z}+\frac{16}{a}

Minimum value= ( 1 + 1 + 4 + 16 ) 2 x + y + z + a \frac{(\sqrt{1}+\sqrt{1}+\sqrt{4}+\sqrt{16})^{2}}{x+y+z+a}

which is equal to 64 x + y + z + a \frac{64}{x+y+z+a} .

But x + y + z + a = 1 x+y+z+a=1 . So, putting it in the above equation, we get the minimum value

as 64 \huge{64} .

Nice solution, @Yash Singhal

Anuj Shikarkhane - 6 years, 7 months ago

Log in to reply

Thanks! BTW Nice question.

Yash Singhal - 6 years, 7 months ago

pretty straightforward tough

Héctor Andrés Parra Vega - 5 years, 11 months ago
Shubhendra Singh
Nov 14, 2014

Let 1 x + 1 y + 2 z + 2 z + 4 a + 4 a + 4 a + 4 a = S \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}+\dfrac{2}{z}+\dfrac{4}{a}+\dfrac{4}{a}+\dfrac{4}{a}+\dfrac{4}{a}=S

By A M H M AM \geq HM

x + y + z 2 + z 2 + a 4 + a 4 + a 4 + a 4 8 8 1 x + 1 y + 2 z + 2 z + 4 a + 4 a + 4 a + 4 a \dfrac{x+y+\dfrac{z}{2}+\dfrac{z}{2}+\dfrac{a}{4}+\dfrac{a}{4}+\dfrac{a}{4}+\dfrac{a}{4}}{8}\geq\dfrac{8}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}+\dfrac{2}{z}+\dfrac{4}{a}+\dfrac{4}{a}+\dfrac{4}{a}+\dfrac{4}{a}}

S 8 8 \dfrac{S}{8}\geq 8

By this

S 64 \boxed{S \geq 64}

Great. I always like using AM-GM-HM with manipulations when it can easily be nailed by CS.

Satvik Golechha - 6 years, 7 months ago

Good way to solve this, nice one!

Bhargav Upadhyay - 6 years, 5 months ago

with positive real numbers u and v we have:

1 u + 1 v 4 u + v \dfrac {1}{u}+\dfrac {1}{v} \geq \dfrac {4}{u+v}

so:

1 x + 1 y + 4 z + 16 a 4 x + y + 4 z + 16 a 16 x + y + z + 16 a 64 x + y + z + a = 64 \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}+\dfrac{16}{a}\geq \dfrac{4}{x+y}+\dfrac{4}{z}+\dfrac{16}{a}\geq \dfrac{16}{x+y+z}+\dfrac{16}{a}\geq \dfrac{64}{x+y+z+a}=64

The minimum occurs when x = y ; x + y = z ; x + y + z = a ; x + y + z + a = 1 x=y ; x+y=z ; x+y+z=a ; x+y+z+a=1 , which means x = y = 1 8 , z = 1 4 , a = 1 2 x=y=\dfrac{1}{8}, z=\dfrac{1}{4}, a=\dfrac{1}{2}

Answer: 64

Nice solution, sir :)

Neeraj Snappy - 6 years, 4 months ago
Adam Staples
Nov 28, 2014

One can let g(x,y,z,a) = x + y + z + a - 1 and let f(x,y,z,a) = 1/x + 1/y + 4/z + 16/a and then Use Lagrange Multipliers.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...