If a , b , c > 0 and a 3 b 2 c = 1 , find the minimum value of ( a + b + c ) 6 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
By AM-GM inequality, ( a + b + c ) 6 = ( 3 a + 3 a + 3 a + 2 b + 2 b + c ) 6 ≥ 1 0 8 6 6 = 4 3 2
{ 4 3 2 , { a → 3 2 3 , b → 3 2 2 / 3 , c → 3 2 3 1 } }
OK, a few more details:
Defining c in terms of a and b is: c = a 3 b 2 1 .
Expanding ( a + b + a 3 b 2 1 ) 6 gives a 1 8 b 1 2 1 + a 1 5 b 9 6 + a 1 4 b 1 0 6 + a 1 2 b 6 1 5 + a 1 1 b 7 3 0 + a 1 0 b 8 1 5 + a 9 b 3 2 0 + a 8 b 4 6 0 + a 7 b 5 6 0 + a 6 b 6 2 0 + a 6 + a 6 1 5 + 6 a 5 b + a 5 b 6 0 + 1 5 a 4 b 2 + a 4 b 2 9 0 + 2 0 a 3 b 3 + a 3 6 b 3 + a 3 b 3 6 0 + 1 5 a 2 b 4 + a 2 b 4 1 5 + b 2 6 a 2 + a 2 3 0 b 2 + 6 a b 5 + b 3 0 a + a 6 0 b + b 6 + 6 0
The derivative of that expression with respect to a is − a 1 9 b 1 2 1 8 − a 1 6 b 9 9 0 − a 1 5 b 1 0 8 4 − a 1 3 b 6 1 8 0 − a 1 2 b 7 3 3 0 − a 1 1 b 8 1 5 0 − a 1 0 b 3 1 8 0 − a 9 b 4 4 8 0 − a 8 b 5 4 2 0 − a 7 b 6 1 2 0 − a 7 9 0 − a 6 b 3 0 0 − a 5 b 2 3 6 0 + 6 a 5 − a 4 1 8 b 3 − a 4 b 3 1 8 0 + 3 0 a 4 b − a 3 b 4 3 0 + 6 0 a 3 b 2 − a 3 6 0 b 2 + 6 0 a 2 b 3 − a 2 6 0 b + 3 0 a b 4 + b 2 1 2 a + 6 b 5 + b 3 0
The derivative of that expression with respect to b is − a 1 8 b 1 3 1 2 − a 1 5 b 1 0 5 4 − a 1 4 b 1 1 6 0 − a 1 2 b 7 9 0 − a 1 1 b 8 2 1 0 − a 1 0 b 9 1 2 0 − a 9 b 4 6 0 − a 8 b 5 2 4 0 − a 7 b 6 3 0 0 − a 6 b 7 1 2 0 − a 5 b 2 6 0 + 6 a 5 − a 4 b 3 1 8 0 + 3 0 a 4 b − a 3 b 4 1 8 0 + 6 0 a 3 b 2 + a 3 1 8 b 2 − a 2 b 5 6 0 + 6 0 a 2 b 3 − b 3 1 2 a 2 + a 2 6 0 b + 3 0 a b 4 − b 2 3 0 a + a 6 0 + 6 b 5
Equating the last two expression to 0 and solving the last two equations together gives a number of solutions and also the value of c was recreated: ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ a a a − 3 − 2 1 3 3 − 2 1 3 − 3 2 3 3 2 3 − 3 2 ( − 1 ) 2 / 3 3 3 2 ( − 1 ) 2 / 3 3 3 1 ( 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 3 2 a 5 + 3 2 a 3 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 − a ) − 3 2 2 / 3 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 ( 1 + i 3 ) a 5 − 6 3 2 a 3 ( 1 − i 3 ) 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 − 3 a − 3 2 2 / 3 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 ( 1 − i 3 ) a 5 − 6 3 2 a 3 ( 1 + i 3 ) 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 − 3 a − 3 3 − 1 2 2 / 3 3 3 − 1 2 2 / 3 − 3 2 2 / 3 3 2 2 / 3 − 3 ( − 2 ) 2 / 3 3 ( − 2 ) 2 / 3 a 3 ( 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 3 2 a 5 + 3 2 a 3 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 − a ) 2 9 a 3 ( − 3 2 2 / 3 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 ( 1 + i 3 ) a 5 − 6 3 2 a 3 ( 1 − i 3 ) 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 − 3 a ) 2 1 a 3 ( − 3 2 2 / 3 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 ( 1 − i 3 ) a 5 − 6 3 2 a 3 ( 1 + i 3 ) 3 − 2 a 1 2 − 2 7 a 6 + 3 3 4 a 1 8 + 2 7 a 1 2 − 3 a ) 2 1 − 3 3 − 2 1 3 3 − 2 1 − 3 2 3 1 3 2 3 1 − 3 2 3 ( − 1 ) 2 / 3 3 2 3 ( − 1 ) 2 / 3 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
Only one of these solutions is numeric, real and greater than zero in all three elements of the solution triple. Evaluating and simplifying the expression to be minimized with those values gives: ( a + b + c ) 6 /. { a → 3 2 3 , b → 3 2 2 / 3 , c → 3 2 3 1 } ⇒ 4 3 2
Problem Loading...
Note Loading...
Set Loading...
By AM-GM inequality :
3 a + 3 a + 3 a + 2 b + 2 b + c ⟹ ( a + b + c ) 6 ≤ 6 6 3 3 × 2 2 a 3 b 2 c = 6 1 0 8 6 ≥ 1 0 8 6 6 = 4 3 2 Since a 3 b 2 c = 1
Equality occurs when a = 6 1 0 8 3 , b = 6 1 0 8 2 , and c = 6 1 0 8 1 .