min ( a + b + c ) 6 = ? \min (a+b+c)^6 = ?

Algebra Level 3

If a , b , c > 0 a,b,c>0 and a 3 b 2 c = 1 a^3b^2c=1 , find the minimum value of ( a + b + c ) 6 (a+b+c)^6 .


The answer is 432.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 23, 2019

By AM-GM inequality :

a 3 + a 3 + a 3 + b 2 + b 2 + c 6 a 3 b 2 c 3 3 × 2 2 6 = 6 108 6 Since a 3 b 2 c = 1 ( a + b + c ) 6 6 6 108 = 432 \begin{aligned} \frac a3 + \frac a3 + \frac a3 + \frac b2 + \frac b2 + c & \le 6 \sqrt [6] {\frac {\color{#3D99F6}a^3b^2c}{3^3 \times 2^2}} = \frac 6{\sqrt[6]{108}} & \small \color{#3D99F6} \text{Since }a^3b^2c = 1 \\ \implies (a+b+c)^6 & \ge \frac {6^6}{108} = \boxed{432} \end{aligned}

Equality occurs when a = 3 108 6 a = \frac 3{\sqrt[6]{108}} , b = 2 108 6 b = \frac 2{\sqrt[6]{108}} , and c = 1 108 6 c = \frac 1{\sqrt[6]{108}} .

Culver Kwan
Aug 23, 2019

By AM-GM inequality, ( a + b + c ) 6 = ( a 3 + a 3 + a 3 + b 2 + b 2 + c ) 6 6 6 108 = 432 \begin{aligned}(a+b+c)^6&=(\frac{a}{3}+\frac{a}{3}+\frac{a}{3}+\frac{b}{2}+\frac{b}{2}+c)^6\\&\ge\frac{6^6}{108}\\&=432\end{aligned}

{ 432 , { a 3 2 3 , b 2 2 / 3 3 , c 1 2 3 3 } } \left\{432,\left\{a\to \frac{\sqrt{3}}{\sqrt[3]{2}},b\to \frac{2^{2/3}}{\sqrt{3}},c\to \frac{1}{\sqrt[3]{2} \sqrt{3}}\right\}\right\}

OK, a few more details:

Defining c c in terms of a a and b b is: c = 1 a 3 b 2 c=\frac{1}{a^3\,b^2} .

Expanding ( a + b + 1 a 3 b 2 ) 6 (a+b+\frac{1}{a^3\,b^2})^6 gives 1 a 18 b 12 + 6 a 15 b 9 + 6 a 14 b 10 + 15 a 12 b 6 + 30 a 11 b 7 + 15 a 10 b 8 + 20 a 9 b 3 + 60 a 8 b 4 + 60 a 7 b 5 + 20 a 6 b 6 + a 6 + 15 a 6 + 6 a 5 b + 60 a 5 b + 15 a 4 b 2 + 90 a 4 b 2 + 20 a 3 b 3 + 6 b 3 a 3 + 60 a 3 b 3 + 15 a 2 b 4 + 15 a 2 b 4 + 6 a 2 b 2 + 30 b 2 a 2 + 6 a b 5 + 30 a b + 60 b a + b 6 + 60 \frac{1}{a^{18} b^{12}}+\frac{6}{a^{15} b^9}+\frac{6}{a^{14} b^{10}}+\frac{15}{a^{12} b^6}+\frac{30}{a^{11} b^7}+\frac{15}{a^{10} b^8}+\frac{20}{a^9 b^3}+\frac{60}{a^8 b^4}+\frac{60}{a^7 b^5}+\frac{20}{a^6 b^6}+a^6+\frac{15}{a^6}+6 a^5 b+\frac{60}{a^5 b}+15 a^4 b^2+\frac{90}{a^4 b^2}+20 a^3 b^3+\frac{6 b^3}{a^3}+\frac{60}{a^3 b^3}+15 a^2 b^4+\frac{15}{a^2 b^4}+\frac{6 a^2}{b^2}+\frac{30 b^2}{a^2}+6 a b^5+\frac{30 a}{b}+\frac{60 b}{a}+b^6+60

The derivative of that expression with respect to a a is 18 a 19 b 12 90 a 16 b 9 84 a 15 b 10 180 a 13 b 6 330 a 12 b 7 150 a 11 b 8 180 a 10 b 3 480 a 9 b 4 420 a 8 b 5 120 a 7 b 6 90 a 7 300 a 6 b 360 a 5 b 2 + 6 a 5 18 b 3 a 4 180 a 4 b 3 + 30 a 4 b 30 a 3 b 4 + 60 a 3 b 2 60 b 2 a 3 + 60 a 2 b 3 60 b a 2 + 30 a b 4 + 12 a b 2 + 6 b 5 + 30 b -\frac{18}{a^{19} b^{12}}-\frac{90}{a^{16} b^9}-\frac{84}{a^{15} b^{10}}-\frac{180}{a^{13} b^6}-\frac{330}{a^{12} b^7}-\frac{150}{a^{11} b^8}-\frac{180}{a^{10} b^3}-\frac{480}{a^9 b^4}-\frac{420}{a^8 b^5}-\frac{120}{a^7 b^6}-\frac{90}{a^7}-\frac{300}{a^6 b}-\frac{360}{a^5 b^2}+6 a^5-\frac{18 b^3}{a^4}-\frac{180}{a^4 b^3}+30 a^4 b-\frac{30}{a^3 b^4}+60 a^3 b^2-\frac{60 b^2}{a^3}+60 a^2 b^3-\frac{60 b}{a^2}+30 a b^4+\frac{12 a}{b^2}+6 b^5+\frac{30}{b}

The derivative of that expression with respect to b b is 12 a 18 b 13 54 a 15 b 10 60 a 14 b 11 90 a 12 b 7 210 a 11 b 8 120 a 10 b 9 60 a 9 b 4 240 a 8 b 5 300 a 7 b 6 120 a 6 b 7 60 a 5 b 2 + 6 a 5 180 a 4 b 3 + 30 a 4 b 180 a 3 b 4 + 60 a 3 b 2 + 18 b 2 a 3 60 a 2 b 5 + 60 a 2 b 3 12 a 2 b 3 + 60 b a 2 + 30 a b 4 30 a b 2 + 60 a + 6 b 5 -\frac{12}{a^{18} b^{13}}-\frac{54}{a^{15} b^{10}}-\frac{60}{a^{14} b^{11}}-\frac{90}{a^{12} b^7}-\frac{210}{a^{11} b^8}-\frac{120}{a^{10} b^9}-\frac{60}{a^9 b^4}-\frac{240}{a^8 b^5}-\frac{300}{a^7 b^6}-\frac{120}{a^6 b^7}-\frac{60}{a^5 b^2}+6 a^5-\frac{180}{a^4 b^3}+30 a^4 b-\frac{180}{a^3 b^4}+60 a^3 b^2+\frac{18 b^2}{a^3}-\frac{60}{a^2 b^5}+60 a^2 b^3-\frac{12 a^2}{b^3}+\frac{60 b}{a^2}+30 a b^4-\frac{30 a}{b^2}+\frac{60}{a}+6 b^5

Equating the last two expression to 0 0 and solving the last two equations together gives a number of solutions and also the value of c c was recreated: ( a 1 3 ( 2 3 a 5 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 + 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 2 3 a 3 a ) 9 a 3 ( 2 3 a 5 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 + 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 2 3 a 3 a ) 2 a ( 1 + i 3 ) a 5 3 2 2 / 3 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 ( 1 i 3 ) 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 6 2 3 a 3 a 3 1 a 3 ( ( 1 + i 3 ) a 5 3 2 2 / 3 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 ( 1 i 3 ) 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 6 2 3 a 3 a 3 ) 2 a ( 1 i 3 ) a 5 3 2 2 / 3 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 ( 1 + i 3 ) 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 6 2 3 a 3 a 3 1 a 3 ( ( 1 i 3 ) a 5 3 2 2 / 3 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 ( 1 + i 3 ) 2 a 12 27 a 6 + 3 3 4 a 18 + 27 a 12 3 6 2 3 a 3 a 3 ) 2 1 2 3 3 1 3 2 2 / 3 3 1 2 3 3 1 2 3 3 1 3 2 2 / 3 3 1 2 3 3 3 2 3 2 2 / 3 3 1 2 3 3 3 2 3 2 2 / 3 3 1 2 3 3 ( 1 ) 2 / 3 3 2 3 ( 2 ) 2 / 3 3 ( 1 ) 2 / 3 2 3 3 ( 1 ) 2 / 3 3 2 3 ( 2 ) 2 / 3 3 ( 1 ) 2 / 3 2 3 3 ) \left( \begin{array}{ccc} a & \frac{1}{3} \left(\frac{\sqrt[3]{2} a^5}{\sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}+\frac{\sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}{\sqrt[3]{2} a^3}-a\right) & \frac{9}{a^3 \left(\frac{\sqrt[3]{2} a^5}{\sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}+\frac{\sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}{\sqrt[3]{2} a^3}-a\right)^2} \\ a & -\frac{\left(1+i \sqrt{3}\right) a^5}{3\ 2^{2/3} \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}-\frac{\left(1-i \sqrt{3}\right) \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}{6 \sqrt[3]{2} a^3}-\frac{a}{3} & \frac{1}{a^3 \left(-\frac{\left(1+i \sqrt{3}\right) a^5}{3\ 2^{2/3} \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}-\frac{\left(1-i \sqrt{3}\right) \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}{6 \sqrt[3]{2} a^3}-\frac{a}{3}\right)^2} \\ a & -\frac{\left(1-i \sqrt{3}\right) a^5}{3\ 2^{2/3} \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}-\frac{\left(1+i \sqrt{3}\right) \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}{6 \sqrt[3]{2} a^3}-\frac{a}{3} & \frac{1}{a^3 \left(-\frac{\left(1-i \sqrt{3}\right) a^5}{3\ 2^{2/3} \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}-\frac{\left(1+i \sqrt{3}\right) \sqrt[3]{-2 a^{12}-27 a^6+3 \sqrt{3} \sqrt{4 a^{18}+27 a^{12}}}}{6 \sqrt[3]{2} a^3}-\frac{a}{3}\right)^2} \\ -\sqrt[3]{-\frac{1}{2}} \sqrt{3} & -\frac{\sqrt[3]{-1} 2^{2/3}}{\sqrt{3}} & -\frac{\sqrt[3]{-\frac{1}{2}}}{\sqrt{3}} \\ \sqrt[3]{-\frac{1}{2}} \sqrt{3} & \frac{\sqrt[3]{-1} 2^{2/3}}{\sqrt{3}} & \frac{\sqrt[3]{-\frac{1}{2}}}{\sqrt{3}} \\ -\frac{\sqrt{3}}{\sqrt[3]{2}} & -\frac{2^{2/3}}{\sqrt{3}} & -\frac{1}{\sqrt[3]{2} \sqrt{3}} \\ \frac{\sqrt{3}}{\sqrt[3]{2}} & \frac{2^{2/3}}{\sqrt{3}} & \frac{1}{\sqrt[3]{2} \sqrt{3}} \\ -\frac{(-1)^{2/3} \sqrt{3}}{\sqrt[3]{2}} & -\frac{(-2)^{2/3}}{\sqrt{3}} & -\frac{(-1)^{2/3}}{\sqrt[3]{2} \sqrt{3}} \\ \frac{(-1)^{2/3} \sqrt{3}}{\sqrt[3]{2}} & \frac{(-2)^{2/3}}{\sqrt{3}} & \frac{(-1)^{2/3}}{\sqrt[3]{2} \sqrt{3}} \\ \end{array} \right)

Only one of these solutions is numeric, real and greater than zero in all three elements of the solution triple. Evaluating and simplifying the expression to be minimized with those values gives: ( a + b + c ) 6 /. { a 3 2 3 , b 2 2 / 3 3 , c 1 2 3 3 } 432 (a+b+c)^6\text{/.}\, \left\{a\to \frac{\sqrt{3}}{\sqrt[3]{2}},b\to \frac{2^{2/3}}{\sqrt{3}},c\to \frac{1}{\sqrt[3]{2} \sqrt{3}}\right\} \Rightarrow 432

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...