Find the minimum value of P

Algebra Level 4

Give x , y x, y are real numbers such that x < 1 , y > 1 x<1, y>1 and

{ x 2 + 1 + x = y y 2 1 ( 1 x ) x 2 + 1 = y ( y 2 1 + 1 ) \left\{\begin{matrix} \sqrt{x^2+1}+x=y-\sqrt{y^2-1} & \\ \left ( 1-x \right )\sqrt{x^2+1}=y\left ( \sqrt{y^2-1}+1 \right ) & \end{matrix}\right.

Find the minimum value of P = 1 x 2 + y 2 1 P= \dfrac{1}{x^2}+y^2-1


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bảo Châu
Dec 9, 2015

We can make the system equations of the condition more simply by creating 2 new non-negative variables a a and b b such that a = x 2 + 1 a=\sqrt{x^2+1} and b = y 2 1 b= \sqrt{y^2-1} Then, we have { a + x = y b a ( 1 x ) = y ( b + 1 ) { x + y = a + b a x + ( b + 1 ) y = a \left\{\begin{matrix} a+x=y-b & \\ a(1-x)=y(b+1) & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -x+y=a+b & \\ ax+(b+1)y=a & \end{matrix}\right. To solve this system, we can do with different ways. And here is a solution using Cramer's rule { D = a b + 1 1 1 = a + b + 1 D x = b + 1 a 1 a + b = b ( a + b + 1 ) D y = a a 1 a + b = a ( a + b + 1 ) { x = D x D = b y = D y D = a x 2 = y 2 1 ( ) \left\{\begin{matrix} D= \begin{vmatrix} a & b+1\\ -1 & 1 \end{vmatrix}=a+b+1& \\ D_x=\begin{vmatrix} b+1 &a \\ 1 & a+b \end{vmatrix}=b(a+b+1) & \\D_y=\begin{vmatrix} a & a\\ -1 & a+b \end{vmatrix}=a(a+b+1) & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\dfrac{D_x}{D}=b & \\ y=\dfrac{D_y}{D}=a & \end{matrix}\right.\Rightarrow x^2=y^2-1\left ( \ast \right ) Thus, we can replace x 2 x^2 by y 2 1 y^2-1 in expression P P .

In particular, P = 1 y 2 1 + y 2 1 P = \dfrac{1}{y^2-1} + y^2 -1 Moreover, according to A M G M AM-GM inequality, we have P 2 P \geq 2 when y 2 1 = 1 y^2-1 = 1 or y = 2 y=\sqrt{2} , thereby determining x = 1 x = -1 .

In other words, the minimum of P P is 2 and it occurs when x = 1 , y = 2 x=-1, y=\sqrt{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...