Find the minimum value of

Calculus Level 3

Find the real value of x x such that the expression 90000 x 2 + 9000 x + 625 + 40 x + x 2 \dfrac{90000}{x^2}+\dfrac{9000}{x}+625+40x+x^2 is minimized.


The answer is -20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Leonel Castillo
Jul 4, 2018

Computing the derivative of the function yields a quartic polynomial, with no easy way of finding solutions (ugly coefficients). Wishful thinking guides us to conjecture an elementary solution instead. The best thing that could happen to us is if the function could be expressed as a product or sum of perfect squares. Noticing the 40 x = 2 × 40 x 40x = 2 \times 40x , let's introduce a ( x + 20 ) 2 (x+20)^2 term to write the function as ( x + 20 ) 2 + 90000 x 2 + 9000 x + 225 (x+20)^2 + \frac{90000}{x^2} + \frac{9000}{x} + 225 .

Now notice that 30 0 2 = 90000 300^2 = 90000 so let's consider introducing a term of the form 300 x \frac{300}{x} . 90000 x 2 + 9000 x + 225 = ( 300 x ) 2 + 30 300 x + 225 \frac{90000}{x^2} + \frac{9000}{x} + 225 = \left(\frac{300}{x}\right)^2 + 30 \frac{300}{x} + 225 . Finally, noticing that 225 = 1 5 2 225 = 15^2 allows us to write all of this as ( 300 x + 15 ) 2 \left( \frac{300}{x} + 15 \right)^2 . Thus, the function may be written as ( x + 20 ) 2 + ( 300 x + 15 ) 2 (x+20)^2 + \left( \frac{300}{x} + 15 \right)^2

We know that x 2 + y 2 0 x^2 + y^2 \geq 0 with equality only when x = y = 0 x=y=0 . x + 20 = 0 x = 20 x+20 = 0 \iff x = -20 and because 300 20 + 15 = 0 \frac{300}{-20} + 15 = 0 , x = 20 x = -20 is the value we are looking for.

Jon Haussmann
Jun 28, 2018

We have that 90000 x 2 + 9000 x + 625 + 40 x + x 2 = ( x + 20 ) 2 ( x 2 + 225 ) x 2 0 \frac{90000}{x^2} + \frac{9000}{x} + 625 + 40x + x^2 = \frac{(x + 20)^2 (x^2 + 225)}{x^2} \ge 0 for all x 0 x \neq 0 . Equality occurs for x = 20 x = -20 .

Chew-Seong Cheong
Jun 15, 2018

f ( x ) = 9000 x 2 + 9000 x + 625 + 40 x + x 2 = 900 ( 100 x 2 + 10 x + 1 4 ) 225 + 625 + ( x 2 + 40 x + 400 ) 400 = 3 0 2 ( 10 x + 1 2 ) 2 + ( x + 20 ) 2 \begin{aligned} f(x) & = \frac {9000}{x^2} + \frac {9000}x + 625 + 40x + x^2 \\ & = 900\left(\frac {100}{x^2} + \frac {10}x + \frac 14\right) - 225 + 625 + (x^2 + 40x + 400) - 400 \\ & = 30^2 \left(\frac {10}x + \frac 12\right)^2 + (x+20)^2 \end{aligned}

We note that f ( x ) 0 f(x) \ge 0 . Using Titu's lemma , we have:

f ( x ) = 3 0 2 ( 10 x + 1 2 ) 2 + ( x + 20 ) 2 ( 30 ( 10 x + 1 2 ) + x + 20 ) 2 1 + 1 = ( x 2 + 35 x 300 ) 2 2 x 2 \begin{aligned} f(x) & = 30^2 \left(\frac {10}x + \frac 12\right)^2 + (x+20)^2 \ge \frac {\left(30\left(\frac {10}x + \frac 12\right) + x+20\right)^2}{1+1} = \frac {(x^2 + 35x-300)^2}{2x^2} \end{aligned}

Equality occurs when

30 ( 10 x + 1 2 ) = x + 20 x 2 + 5 x 300 = 0 ( x + 20 ) ( x 15 ) = 0 x = 20 when minimum f ( x ) = 0 occurs. \begin{aligned} 30\left(\frac {10}x + \frac 12\right) & = x+20 \\ \implies x^2 + 5x - 300 & = 0 \\ (x+20)(x-15) & = 0 \\ \implies x & = \boxed{-20} & \small \color{#3D99F6} \text{when minimum }f(x) = 0 \text{ occurs.} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...