Find the missing value in the inequality below.

Calculus Level 3

If 2 sin ( x ) + 2 cos ( x ) 2 a \large 2^{\sin(x)} + 2^{\cos(x)} \ge 2^{a} for all real x x then find the maximum value of a a to three decimal places.


The answer is 0.293.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 24, 2017

Since both 2 sin x , 2 cos x > 0 2^{\sin x}, 2^{\cos x} > 0 , we can apply AM-PM inequality .

2 sin x + 2 cos x 2 2 sin x + cos x 2 2 2 sin ( x + π 4 ) Note that min ( sin ( x + π 4 ) ) = 1 2 2 2 = 2 1 1 2 when x = 5 π 4 and equality occurs. \large \begin{aligned} 2^{\sin x} + 2^{\cos x} & \ge 2\sqrt{2^{\sin x + \cos x}} \\ & \ge 2\sqrt{2^{\sqrt 2 \color{#3D99F6} \sin \left(x + \frac \pi 4\right)}} & \small \color{#3D99F6} \text{Note that }\min \left(\sin \left(x + \frac \pi 4\right) \right) = -1 \\ & \ge 2\sqrt{2^{{\color{#3D99F6}-}\sqrt 2}} = 2^{1-\frac 1{\sqrt 2}} & \small \color{#3D99F6} \text{when } x = \frac {5\pi}4 \text{and equality occurs.} \end{aligned}

a = 1 1 2 0.293 \implies a = 1-\dfrac 1{\sqrt 2} \approx \boxed{0.293}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...