Find the number of solution and solve the system

Algebra Level 3

Find the number of ordered pairs ( x , y ) (x,y) satisfying the system of equations below:

{ x 4 + x 2 y 2 + y 4 = 91 x 2 x y + y 2 = 7 \large \begin{cases} x^4+x^2y^2+y^4=91 \\ x^2-xy+y^2=7 \end{cases}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
Jun 19, 2018

x 4 + x 2 y 2 + y 4 = 91 ( 1 ) x 2 x y + y 2 = 7 ( 2 ) x 4 2 x 3 y + 3 x 2 y 2 2 x y 3 + y 4 = 49 ( 3 ) [ ( 2 ) squared ] 2 x 3 y 2 x 2 y 2 + 2 x y 3 = 42 [ ( 1 ) ( 3 ) ] x y ( x 2 x y + y 2 ) = 21 x y ( 7 ) = 21 [ Substituting with ( 2 ) ] x y = 3 ( 4 ) x 2 2 x y + y 2 = 4 [ ( 2 ) ( 4 ) ] ( x y ) 2 = 4 x y = ± 2 ( 5 ) x 2 + 2 x y + y 2 = 16 [ ( 2 ) + 3 × ( 4 ) ] ( x + y ) 2 = 16 x + y = ± 4 ( 6 ) \begin{aligned} x^4 + x^2y^2 + y^4 &= 91 \quad &&(1) \\ x^2 - xy + y^2 &= 7 &&(2) \\ \\ x^4 - 2x^3y + 3x^2y^2 - 2xy^3 + y^4 &= 49 &&(3) &\small [\ (2) \text{ squared }] \\ 2x^3y - 2x^2y^2 + 2xy^3 &= 42 &&\text{ } &\small [\ (1) - (3) \ ] \\ xy(x^2 - xy + y^2) &= 21 \\ xy(7) &= 21 &&\text{ } &\small \text{[ Substituting with } (2) \ ] \\ xy&= 3 &&(4) \\ \\ x^2 - 2xy + y^2 &= 4 &&\text{ } &\small [\ (2) - (4) \ ] \\ (x - y)^2 &= 4 \\ x - y &= \pm 2 &&(5) \\ \\ x^2 + 2xy +y^2 &= 16 &&\text{ } &\small [\ (2) + 3 \times (4) \ ] \\ (x + y)^2 &= 16 \\ x + y &= \pm 4 &&(6) \\ \\ \end{aligned}

Solving the four systems created by combining ( 5 ) (5) and ( 6 ) (6) yields ( 1 , 3 ) , ( 3 , 1 ) , ( 1 , 3 ) (1, 3), (3, 1), (-1,-3) and ( 3 , 1 ) (-3, -1) as solutions for ( x , y ) (x, y) , and it's straightforward to verify that all four are solutions to our original system.

P.S. Can anyone tell me why the comments are lined up on the right rather than the left? Thanks!

Try using "\begin{array} { r c l l }" instead. Personally, I rarely use "\begin{align}".

Pi Han Goh - 2 years, 11 months ago

Log in to reply

Thanks for the great suggestion; I've used {array} a few times now, am finding it much better than {align}.

zico quintina - 2 years, 11 months ago
Chew-Seong Cheong
Jun 20, 2018

x 2 x y + y 2 = 7 Given x 2 + y 2 = x y + 7 Squaring both sides x 4 + 2 x 2 y 2 + y 4 = x 2 y 2 + 14 x y + 49 Subtracting x 2 y 2 both sides x 4 + x 2 y 2 + y 4 = 14 x y + 49 Given x 4 + x 2 y 2 + y 4 = 91 14 x y + 49 = 91 14 x y = 42 x y = 3 x 2 + y 2 = x y + 7 = 10 \begin{aligned} x^2 - xy + y^2 & = 7 & \small \color{#3D99F6} \text{Given} \\ \implies x^2 + y^2 & = xy + 7 & \small \color{#3D99F6} \text{Squaring both sides} \\ x^4 + 2x^2y^2 + y^4 & = x^2y^2 + 14xy + 49 & \small \color{#3D99F6} \text{Subtracting }x^2y^2 \text{ both sides} \\ \color{#3D99F6} x^4 + x^2y^2 + y^4 & = 14xy + 49 & \small \color{#3D99F6} \text{Given }x^4 + x^2y^2 + y^4 = 91 \\ \implies 14xy + 49 & = \color{#3D99F6} 91 \\ 14xy & = 42 \\ \implies xy & = 3 \\ \implies x^2 + y^2 & = xy+7 = 10 \end{aligned}

Since x 2 + y 2 = 10 x^2 + y^2 = 10 is a circle, let x = 10 cos θ x=\sqrt{10}\cos \theta and y = 10 sin θ y = \sqrt{10}\sin \theta . Then we have:

x y = 10 cos θ sin θ = 3 5 sin ( 2 θ ) = 3 sin ( 2 θ ) = 3 5 By half-angle tangent substitution 2 tan θ 1 + tan 2 θ = 3 5 \begin{aligned} xy & = 10 \cos\theta \sin \theta = 3 \\ 5\sin (2\theta) & = 3 \\ \sin (2\theta) & = \frac 35 & \small \color{#3D99F6} \text{By half-angle tangent substitution} \\ \frac {2\tan \theta}{1+\tan^2 \theta} & = \frac 35 \end{aligned}

3 tan 2 θ 10 tan θ + 3 = 0 ( 3 tan θ 1 ) ( tan θ 3 ) = 0 \begin{aligned} \implies 3\tan^2 \theta - 10 \tan \theta + 3 & = 0 \\ (3\tan \theta - 1)(\tan \theta - 3) & = 0 \end{aligned}

tan θ = { 1 3 cos θ = 3 10 , sin θ = 1 10 ( x , y ) = ( 3 , 1 ) 3 cos θ = 1 10 , sin θ = 3 10 ( x , y ) = ( 1 , 3 ) \implies \tan \theta = \begin{cases} \frac 13 & \implies \cos \theta = \frac 3{\sqrt{10}},\ \sin \theta = \frac 1{\sqrt{10}} & \implies (x,y) = (3,1) \\ 3 & \implies \cos \theta = \frac 1{\sqrt{10}},\ \sin \theta = \frac 3{\sqrt{10}} & \implies (x,y) = (1,3) \end{cases}

Since the two given equations are even, ( x , y ) = ( 3 , 1 ) , ( 1 , 3 ) (x,y) = (-3,-1), (-1,-3) are also solutions. Therefore, there are 4 \boxed{4} ordered pairs ( x , y ) = ( 3 , 1 ) , ( 1 , 3 ) , ( 1 , 3 ) , ( 3 , 1 ) (x,y) = (-3,-1), (-1,-3), (1,3), (3,1) satisfying the system of equations.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...