Let a 1 , a 2 , a 3 , a 4 , a 5 be a 5 term geometric sequence satisfying 0 < a 1 < a 2 < a 3 < a 4 < a 5 < 1 0 0 , where each term is an integer. The number of such 5 terms are
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What the hell man!!!!!! Please any body help me to latex. I wrote that.
L e t t h e n u m b e r s b e a , a r , a r 2 , a r 3 , a r 4 . − − − − − − N o w a [ r 4 ] < 1 0 0 . a n d a > = 1 S o r 4 < 1 0 0 r < 1 0 . N o w r > 1 . ( i n c r e a s i n g G . P ) T w o c a s e s A : 1 > r i s r a t i o n a l : S u b c a s e : r i s i n t e g e r . r = 2 o r 3 . f o r r = 2 : 1 6 a < 1 0 0 S o a = 1 , 2 , 3 , 4 , 5 , 6 . [ 6 G . P s ] f o r r = 3 : 8 1 a < 1 0 0 S o a = 1 . [ 1 G . P ] B : I f r i s n o t i n t e g e r r = p / q p , q > 1 , ( p , q ) = 1 i f q = 2 . p > = 3 . [ s i n c e r > 1 ] a ( p 4 / q 4 ) i s a n i n t e g e r S o q 4 ∣ a p 4 q 4 ∣ a [ S i n c e q 4 a n d p 4 a r e c o − p r i m e . F o r q = 2 . a = 1 6 k . a r 4 < 1 0 0 ≤ p = 3 , a = 1 6 . S o a n o t h e r G . P w i t h a = 1 6 r = 3 / 2 . q > = 3 = > a > = 8 1 s o a r > 1 0 0 n o s o l u t i o n 2 > r i s i r r a t i o n a l a r i s i r r a t i o n a l s o c o n t r a d i c t i o n . S o i n t o t a l 8 G . P I hope it is correct Latex. It is almost your coding with ( and ) added. I used the same method, but not as logical as yours. up voted.
Log in to reply
Thanks. R u really 87???
Problem Loading...
Note Loading...
Set Loading...
Let the numbers be a,ar, ar^{2},ar^{3},ar^{4}.---------------------------------------------- Now a[r^{4}]<100. and a>=1 So r^{4}<100 r<\sqrt{10}. Now r>1.(increasing G.P) Two cases : 1>r is rational : Subcase: r is integer. r=2 or 3. for r=2 : 16a<100 So a=1,2,3,4,5,6.[ 6G.Ps ] for r=3 : 81a<100 So a=1.[ 1G.P ] if r is not integer r=p/q p,q>1 (p,q)=1 if q=2. p>=3.[since r>1] a(p^{4}/q^{4}) is an integer So q^{4} |ap^{4} q^{4} |a [Since q^{4} and p^{4} are co-prime. for q=2. a=16k. ar^{4} <100 => p=3,a=16. So another G.P with a=16 r=3/2. q>=3 =>a>=81 so ar>100 no solution 2>r is irrational ar is irrational so contradiction. So in total \boxed{8 G.P}