Find the numerical value.

Algebra Level 4

Let a , b , a, b, and c c be the roots of x 3 4 x 8 = 0 x^{3}-4x-8=0 . Find the numerical value of the expression a + 2 a 2 + b + 2 b 2 + c + 2 c 2 \frac{a+2}{a-2}+\frac{b+2}{b-2}+\frac{c+2}{c-2} .

P M O 2014 PMO2014


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jack Mamati
Oct 21, 2014

Given equation: x 3 4 x 8 = 0 x^3-4x-8=0 , where the roots are a , b , a, b, and c c

a + b + c = 0 a+b+c=0

a b + b c + a c = 4 ab+bc+ac=-4

a b c = 8 abc=8

The expression

a + 2 a 2 + b + 2 b 2 + c + 2 c 2 \frac{a+2}{a-2}+\frac{b+2}{b-2}+\frac{c+2}{c-2}

= a 2 + 4 a 2 + b 2 + 4 b 2 + c 2 + 4 c 2 =\frac{a-2+4}{a-2}+\frac{b-2+4}{b-2}+\frac{c-2+4}{c-2}

= 3 + 4 ( 1 a 2 + 1 b 2 + 1 c 2 ) =3+4(\frac{1}{a-2}+\frac{1}{b-2}+\frac{1}{c-2})

= 3 + 4 ( a c + b c + a b 4 ( a + b + c ) + 12 a b c 2 ( a b + b c + a c ) + 4 ( a + b + c ) 8 ) =3+4(\frac{ac+bc+ab-4(a+b+c)+12}{abc-2(ab+bc+ac)+4(a+b+c)-8})

= 3 + 4 ( 4 4 ( 0 ) + 12 8 2 ( 4 ) + 4 ( 0 ) 8 ) =3+4(\frac{-4-4(0)+12}{8-2(-4)+4(0)-8})

= 3 + 4 ( 8 8 ) =3+4(\frac{8}{8})

= 3 + 4 =3+4

= 7 =\boxed{7}

OR

Given equation: x 3 4 x 8 = 0 x^3-4x-8=0 , where the roots are a , b , a, b, and c c

a + b + c = 0 a+b+c=0

a b + b c + a c = 4 ab+bc+ac=-4

a b c = 8 abc=8

The expression

a + 2 a 2 + b + 2 b 2 + c + 2 c 2 \frac{a+2}{a-2}+\frac{b+2}{b-2}+\frac{c+2}{c-2}

= ( a + 2 ) ( b 2 ) ( c 2 ) + ( b + 2 ) ( a 2 ) ( c 2 ) + ( c + 2 ) ( a 2 ) ( b 2 ) ( a 22 ) ( b 2 ) ( c 2 ) =\frac{(a+2)(b-2)(c-2)+(b+2)(a-2)(c-2)+(c+2)(a-2)(b-2)}{(a-22)(b-2)(c-2)}

= 3 a b c 2 ( a c + a b + b c ) 4 ( a + b + c ) + 24 a b c 2 ( a b + b c + a c ) + 4 ( a + b + c ) 8 =\frac{3abc-2(ac+ab+bc)-4(a+b+c)+24}{abc-2(ab+bc+ac)+4(a+b+c)-8}

= 3 ( 8 ) 2 ( 4 ) 4 ( 0 ) + 24 8 2 ( 4 ) + 4 ( 0 ) 8 =\frac{3(8)-2(-4)-4(0)+24}{8-2(-4)+4(0)-8}

= 56 8 =\frac{56}{8}

= 7 =\boxed{7}

Jack Mamati - 6 years, 7 months ago
Aritra Jana
Oct 19, 2014

I know, direct application of vieta's relations work, but let's try a different approach

Given equation: x 3 4 x 8 x^{3}-4x-8 where the roots are a,b, and c \text{a,b, and c}

we need to find the value of x k + 2 x k 2 \sum\frac{x_k+2}{x_k-2} where x k x_k are the roots of the given equation, i.e x k = a , b , c x_k=a,b,c

let y k = x k + 2 x k 2 y_k=\frac{x_k+2}{x_k-2}

therefore, by componendo dividendo,

x k = 2 y k + 1 y k 1 x_k=2\frac{y_k+1}{y_k-1}

(the motivation for doing this was trying to find a polynomial with roots= y k y_k and then calculate y k \sum y_k by vieta's relation)

putting the values of x k x_k in the given polynomial yields the equation:

( y k + 1 y k 1 ) 3 ( y k + 1 y k 1 ) 1 = 0 (\frac{y_k+1}{y_k-1})^{3} - (\frac{y_k+1}{y_k-1}) -1=0

A short computation yields this as:

y k 3 7 y k 2 y k 2 = 0 y_k^{3}-7y_k^{2}-y_k-2=0

By vieta's relations,

the desired sum = x k + 2 x k 2 = y k = 7 =\sum\frac{x_k+2}{x_k-2}=\sum y_k=7

Our answer= 7 \boxed{7}

@Jack Mamati ...care to post your own solution? :D

Aritra Jana - 6 years, 7 months ago

This is a very pretty solution.

Panya Chunnanonda - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...