a , b , and c be the roots of x 3 − 4 x − 8 = 0 . Find the numerical value of the expression a − 2 a + 2 + b − 2 b + 2 + c − 2 c + 2 .
LetP M O 2 0 1 4
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
OR
Given equation: x 3 − 4 x − 8 = 0 , where the roots are a , b , and c
a + b + c = 0
a b + b c + a c = − 4
a b c = 8
The expression
a − 2 a + 2 + b − 2 b + 2 + c − 2 c + 2
= ( a − 2 2 ) ( b − 2 ) ( c − 2 ) ( a + 2 ) ( b − 2 ) ( c − 2 ) + ( b + 2 ) ( a − 2 ) ( c − 2 ) + ( c + 2 ) ( a − 2 ) ( b − 2 )
= a b c − 2 ( a b + b c + a c ) + 4 ( a + b + c ) − 8 3 a b c − 2 ( a c + a b + b c ) − 4 ( a + b + c ) + 2 4
= 8 − 2 ( − 4 ) + 4 ( 0 ) − 8 3 ( 8 ) − 2 ( − 4 ) − 4 ( 0 ) + 2 4
= 8 5 6
= 7
I know, direct application of vieta's relations work, but let's try a different approach
Given equation: x 3 − 4 x − 8 where the roots are a,b, and c
we need to find the value of ∑ x k − 2 x k + 2 where x k are the roots of the given equation, i.e x k = a , b , c
let y k = x k − 2 x k + 2
therefore, by componendo dividendo,
x k = 2 y k − 1 y k + 1
(the motivation for doing this was trying to find a polynomial with roots= y k and then calculate ∑ y k by vieta's relation)
putting the values of x k in the given polynomial yields the equation:
( y k − 1 y k + 1 ) 3 − ( y k − 1 y k + 1 ) − 1 = 0
A short computation yields this as:
y k 3 − 7 y k 2 − y k − 2 = 0
By vieta's relations,
the desired sum = ∑ x k − 2 x k + 2 = ∑ y k = 7
Our answer= 7
@Jack Mamati ...care to post your own solution? :D
This is a very pretty solution.
Problem Loading...
Note Loading...
Set Loading...
Given equation: x 3 − 4 x − 8 = 0 , where the roots are a , b , and c
a + b + c = 0
a b + b c + a c = − 4
a b c = 8
The expression
a − 2 a + 2 + b − 2 b + 2 + c − 2 c + 2
= a − 2 a − 2 + 4 + b − 2 b − 2 + 4 + c − 2 c − 2 + 4
= 3 + 4 ( a − 2 1 + b − 2 1 + c − 2 1 )
= 3 + 4 ( a b c − 2 ( a b + b c + a c ) + 4 ( a + b + c ) − 8 a c + b c + a b − 4 ( a + b + c ) + 1 2 )
= 3 + 4 ( 8 − 2 ( − 4 ) + 4 ( 0 ) − 8 − 4 − 4 ( 0 ) + 1 2 )
= 3 + 4 ( 8 8 )
= 3 + 4
= 7