Find The Pattern - 2

We are given the equations below.

987654321 × 9 = 08 888 888 889 987654321 × 18 = 17 777 777 778 987654321 × 27 = 26 666 666 667 987654321 × 36 = 35 555 555 556 987654321 × 45 = 44 444 444 445 987654321 × 54 = 53 333 333 334 987654321 × 63 = 62 222 222 223 \begin{array}{ccrc} 987654321&\times&9&=&08\,888\,888\,889\\ 987654321&\times&18&=&17\,777\,777\,778\\ 987654321&\times&27&=&26\,666\,666\,667\\ 987654321&\times&36&=&35\,555\,555\,556\\ 987654321&\times&45&=&44\,444\,444\,445\\ 987654321&\times&54&=&53\,333\,333\,334\\ 987654321&\times&63&=&62\,222\,222\,223 \\ \end{array}

What is the value of 987654321 × 72 ? 987654321 \times 72 ?

Note : Can you explain what is happening?


The answer is 71111111112.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 24, 2016

We note that the pattern is 987654321 × 9 n = a b b b b b b b b b 9 b ’s c 987654321 \times 9n = \overline{a\underbrace{bbbbbbbbb}_{9 \ b \text{'s}}c} , where a = n 1 a=n-1 , b = 9 n b=9-n and c = 10 n c=10-n .

Therefore, for n = 8 n=8 , we have 71111111112 \boxed{71111111112} .

For what is happening:

For positive integer n < 10 n < 10 , the general equation is as follows:

987 654 321 × 9 n = 8 888 888 889 n = 8 888 888 888 n + n = 8 n ( 1 111 111 111 ) + n = ( 9 1 ) ( 1 111 111 111 ) n + n = 9 999 999 999 n 1 111 111 111 n + n = 10 000 000 000 n n 1 111 111 111 n + n = 10 000 000 000 n 1 111 111 111 n = n 0 000 000 000 n n n n n n n n n n = a b b b b b b b b b c where a = n 1 , b = 9 n , c = 10 n \begin{aligned} 987\ 654\ 321 \times 9n & = 8 \ 888 \ 888 \ 889n \\ & = 8\ 888\ 888\ 888n + n \\ & = 8n(1\ 111\ 111\ 111) + n \\ & = (9-1)(1\ 111\ 111\ 111)n + n \\ & = 9\ 999\ 999\ 999n - 1\ 111\ 111\ 111n + n \\ & = 10\ 000\ 000\ 000n - n - 1\ 111\ 111\ 111n + n \\ & = 10\ 000\ 000\ 000n - 1\ 111\ 111\ 111n \\ & = \overline{n0\ 000\ 000\ 000} - \overline{n\ nnn\ nnn\ nnn} \\ & = \overline{ab\ bbb\ bbb\ bbc } \quad \quad \small \color{#3D99F6}{\text{where }a = n-1, \ b= 9-n, \ c= 10-n} \end{aligned}

Yes, that is the pattern. Now, why is it happening? Note that the pattern breaks when we try and multiply by 90.

Calvin Lin Staff - 4 years, 10 months ago

Log in to reply

Thanks for explaining it :)

The pattern "breaks" when we multiply by 9 × 10 9 \times 10 where n = 10 n = 10 gives us b = 1 b = - 1 . If we substituted that into the final formula and did the "negative carry over", we will arrive at the value of 88888888890.

Calvin Lin Staff - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...