Find the polygon

Geometry Level 4

1 A 1 A 2 = 1 A 1 A 3 + 1 A 1 A 4 \large \frac1{A_1 A_2} = \frac1{A_1 A_3} + \frac1{A_1 A_4 }

If A 1 , A 2 , A 3 , , A n A_1, A_2, A_3, \ldots, A_n are consecutive vertices of a regular n n -sided polygon such that the equation above is fulfilled, find the value of n n .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jul 16, 2015

O A 1 = O A 2 = O A 3 = r OA_{1}=OA_{2}=OA_{3}=r

< A 1 O A 2 = < A 2 O A 3 = < A 3 O A 4 = 2 π n <A_{1}OA_{2}=<A_{2}OA_{3}=<A_{3}OA_{4}=\frac{2\pi}{n}

( A 1 A 2 ) 2 = r 2 + r 2 2 r 2 cos ( α ) (A_{1}A_{2})^2=r^2+r^{2}-2r^{2}\cos (\alpha)

where α = 2 π n \alpha=\frac{2\pi}{n}

A 1 A 2 = 2 r sin ( α 2 ) \large{A_{1}A_{2}=2r\sin(\frac{\alpha}{2})}

A 1 A 3 = 2 r sin ( 2 α 2 ) \large{A_{1}A_{3}=2r\sin(\frac{2\alpha}{2})}

A 1 A 4 = 2 r sin ( 3 α 2 ) \large{A_{1}A_{4}=2r\sin(\frac{3\alpha}{2})}

Now substitute the corresponding values

1 sin ( α 2 ) = 1 sin ( α ) + 1 sin ( 3 α 2 ) \large{\color{#3D99F6}{\frac{1}{\sin(\frac{\alpha}{2})}=\frac{1}{\sin(\alpha)}+\frac{1}{\sin(\frac{3\alpha}{2})}}}

Nowadays this property is in fashion \color{#D61F06} {\text{Nowadays this property is in fashion}}

sin 3 x sin x = 1 + 2 cos 2 x \large{\frac{\sin 3x}{\sin x}=1+2\cos 2x}

( 1 + 2 cos α ) ( sin α ) = sin ( 3 α 2 ) + sin ( α ) \large{(1+2\cos \alpha)(\sin \alpha)=\sin(\frac{3 \alpha}{2})+\sin(\alpha)}

sin ( 2 α ) sin ( 3 α 2 ) = 0 \large{\sin (2\alpha)-\sin(\frac{3 \alpha}{2})=0}

cos ( 7 α 4 ) sin ( α 4 ) = 0 \large{\cos(\frac{7\alpha}{4})\sin(\frac{ \alpha}{4})=0}

It is clear that π 2 n 0 \frac{\pi}{2n}\neq 0

hence 7 α 4 = π 2 \large{\frac{7\alpha}{4}=\frac{\pi}{2}}

n = 7 \large{\boxed{n=7}}

NIce question and solution, Tanishq. For sake of clarity it might be a good idea to specify that the vertices as listed are indeed consecutive, and that we are dealing with regular n-sided polygons.

Brian Charlesworth - 5 years, 11 months ago

Nice solution

Sayandeep Ghosh - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...