Find the product.

Calculus Level 5

P = 2 4 3 3 4 6 5 5 6 8 7 7 8 10 9 9 . . . = k = 1 ( 2 k ) ( 2 k + 2 ) ( 2 k + 1 ) ( 2 k + 1 ) \begin{aligned} P&=\frac{2\cdot4}{3\cdot3}\cdot\frac{4\cdot6}{5\cdot5}\cdot\frac{6\cdot8}{7\cdot7}\cdot\frac{8\cdot10}{9\cdot9}...\\ & =\prod_{k=1}^∞\frac{(2k)(2k+2)}{(2k+1)(2k+1)} \end{aligned}

Evaluate the infinite product above and enter 1 0 10 P \lfloor 10^{10} P \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function.


The answer is 7853981633.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 22, 2017

P = lim n k = 1 n ( 2 k ) ( 2 k + 2 ) ( 2 k + 1 ) 2 = lim n 2 2 n n ! ( n + 1 ) ! ( 2 n + 1 ) ! ! 2 = lim n 2 2 n n ! ( n + 1 ) ! ( 2 n n ! ( 2 n + 1 ) ! ) 2 = lim n 2 4 n n ! 3 ( n + 1 ) ! ( 2 n + 1 ) ! 2 By Stirling’s formula: n ! 2 π n n + 1 2 e n = lim n 2 4 n ( 2 π n n + 1 2 e n ) 3 2 π ( n + 1 ) n + 3 2 e n 1 ( 2 π ( 2 n + 1 ) 2 n + 3 2 e 2 n 1 ) 2 = lim n 2 4 n ( 2 π n n + 1 2 e n ) 3 2 π n n + 3 2 e n 1 ( 2 π ( 2 n ) 2 n + 3 2 ( 1 + 1 2 n ) 2 n + 3 2 e 2 n 1 ) 2 Note that lim n ( 1 + 1 2 n ) 2 n + 3 2 = e = lim n 2 4 n + 2 π 2 n 4 n + 3 e 4 n 1 2 4 n + 4 π n 4 n + 3 e 4 n 1 = π 4 \begin{aligned} P &= \lim_{n \to \infty} \prod_{k=1}^n \frac {(2k)(2k+2)}{(2k+1)^2} \\ &= \lim_{n \to \infty} \frac {2^{2n}n!(n+1)!}{\color{#3D99F6}(2n+1)!!^2} \\ &= \lim_{n \to \infty} 2^{2n}n!(n+1)! \cdot \color{#3D99F6} \left( \frac {2^{n}n!}{(2n+1)!} \right)^2 \\ &= \lim_{n \to \infty} \frac {2^{4n}n!^3(n+1)!}{(2n+1)!^2} & \small \color{#3D99F6} \text{By Stirling's formula: } n! \sim \sqrt{2\pi} n^{n+\frac 12} e^{-n} \\ &= \lim_{n \to \infty} \frac {2^{4n}(\sqrt{2\pi} n^{n+\frac 12} e^{-n})^3\sqrt{2\pi} (n+1)^{n+\frac 32} e^{-n-1}}{(\sqrt{2\pi} (2 n+1)^{2n+\frac 32} e^{-2n-1})^2} \\ &= \lim_{n \to \infty} \frac {2^{4n}(\sqrt{2\pi} n^{n+\frac 12} e^{-n})^3\sqrt{2\pi} n^{n+\frac 32} e^{-n-1}}{\left(\sqrt{2\pi} (2 n)^{2n+\frac 32} {\color{#3D99F6}\left(1+\frac 1{2n}\right) ^{2n+\frac 32}} e^{-2n-1}\right)^2} & \small \color{#3D99F6} \text{Note that } \lim_{n \to \infty} \left(1+\frac 1{2n}\right) ^{2n+\frac 32} = e \\ &= \lim_{n \to \infty} \frac {2^{4n+2}\pi^2 n^{4n+3}e^{-4n-1}}{2^{4n+4}\pi n^{4n+3}e^{-4n-1}} \\ & = \frac \pi 4 \end{aligned}

1 0 10 P = 7853981633 \implies \lfloor 10^{10}P \rfloor = \boxed{7853981633}

Very nice.

Also, I'm quite impressed that you were able to calculate the sum I recently posted, especially so quickly. I would love to see the solution.

:)

Daniel Juncos - 4 years, 1 month ago

Log in to reply

Glad that you like the solution. Newly discovered that Stirling's formula can be so useful.

Chew-Seong Cheong - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...