Find the real matrices

Algebra Level 3

\( Find\,\,two\,\,real\,\,matrices\,\,M,\,\,N\,\,with \\ M^2+N^2=\left( \begin{matrix} 2& 3\\ 3& 2\\ \end{matrix} \right) \\ Bonus:\,\,Show\,\,that\,\,if\,\,M,\,\,N\,\,are\,\,real\,\,matrices\,\,with \\ M^2+N^2=\,\,\left( \begin{matrix} 2& 3\\ 3& 2\\ \end{matrix} \right) \,\,then\,\,MN\ne NM

\)

M = ( 1 3 0 1 ) , N = M T M=\left( \begin{matrix} 1& \sqrt{3}\\ 0& 1\\ \end{matrix} \right) ,\,\,N=M^{-T} M = ( 3 0 3 2 1 ) , N = M T M=\left( \begin{matrix} \sqrt{3}&0\\ \frac{3}{2}&1 \end{matrix} \right), N=M^T M = ( 1 3 2 0 1 ) , N = M T M=\left( \begin{matrix} 1& \frac{3}{2}\\ 0& 1\\ \end{matrix} \right) ,\,\,N=M^T

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 11, 2019

If M ( a ) M(a) is the matrix M ( a ) = ( 1 a 0 1 ) M(a) \; = \; \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right) then M ( a ) 2 = M ( 2 a ) M(a)^2 = M(2a) , and hence M ( a ) 2 + ( M ( a ) T ) 2 = M ( 2 a ) + M ( 2 a ) T = ( 2 2 a 2 a 2 ) M(a)^2 + \big(M(a)^T\big)^2 \; = \; M(2a) + M(2a)^T \; = \; \left(\begin{array}{cc} 2 & 2a \\ 2a & 2 \end{array}\right) so, for this question, we want M = M ( 3 2 ) M = M(\tfrac32) and N = M T N = M^T .

If M , N M,N are real matrices such that M 2 + N 2 = ( 2 3 3 2 ) M^2 + N^2 = \left(\begin{array}{cc} 2 & 3 \\ 3 & 2 \end{array}\right) and M N = N M MN=NM , then Z = M + i N Z = M+iN is a complex matrix such that Z Z = ( 2 3 3 2 ) Z \,\overline{Z} = \left(\begin{array}{cc}2 & 3 \\ 3 & 2 \end{array}\right) , which implies that d e t Z 2 = d e t Z × d e t Z = d e t ( 2 3 3 2 ) = 5 \big|\mathrm{det}\,Z\big|^2 \; = \; \mathrm{det}\,Z \times \mathrm{det}\,\overline{Z} \; = \; \mathrm{det}\left(\begin{array}{cc} 2 & 3 \\ 3 & 2 \end{array}\right) \; = \; -5 which is not possible.

A minor typo in the second line, it should be M ( a ) 2 + ( M ( a ) T ) 2 \displaystyle M\left(a\right)^2+\left(M\left(a\right)^T\right)^2

Aaghaz Mahajan - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...