( 4 1 7 − 1 2 2 ) sin 2 x + sin 2 x 1 + ( 4 1 7 + 1 2 2 ) sin 2 x + sin 2 x 1 = 6
Find real number x ∈ [ 0 , 2 π ] satisfying the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Assuming that ( a ± b 2 ) 4 = 1 7 ± 1 2 2 ⟹ 4 1 7 ± 1 2 2 = a ± b 2 .
( a ± b 2 ) 4 a 4 ± 4 a 3 b 2 + 1 2 a 2 b 2 ± 8 a b 3 2 + 4 b 4 = 1 7 ± 1 2 2 = 1 7 ± 1 2 2
Equating the rational and irrational parts, we have:
{ a 4 + 1 2 a 2 b 2 + 4 b 4 = 1 7 4 a 3 b + 8 a b 3 = 1 2 ⟹ a 3 b + 2 a b 3 = 3
By observation, we note that a = b = 1 . ⟹ 4 1 7 ± 1 2 2 = 1 ± 2 .
Let y = sin 2 x + sin 2 x 1 . Then we have:
\begin{aligned} X & = \left(\sqrt [4] {17 - 12\sqrt 2}\right)^y + \left(\sqrt [4] {17 + 12\sqrt 2}\right)^y \\ & = \left(1-\sqrt 2 \right)^\color{#3D99F6}{y} + \left(1+\sqrt 2 \right)^\color{#3D99F6}{y} & \small \color{#3D99F6}{\text{By observation }y=2} \\ & = \left(1-\sqrt 2 \right)^\color{#3D99F6}{2} + \left(1+\sqrt 2 \right)^\color{#3D99F6}{2} \\ & = 1 - 2\sqrt 2 + 2 + 1 + 2\sqrt 2 + 2 \\ & = 6 \end{aligned}
⟹ sin 2 x + sin 2 x 1 u + u 1 u 2 − 2 u + 1 ( u − 1 ) 2 u ⟹ sin 2 x sin 2 x ⟹ x = 2 = 2 = 0 = 0 = 1 = 1 = 1 = 4 π ≈ 0 . 7 8 5 Let u = sin 2 x
Problem Loading...
Note Loading...
Set Loading...
Solution: we have 4 1 7 + 1 2 2 = 4 1 7 + 2 ( 3 ) ( 2 2 )
= 4 9 + 8 + 2 ( 3 ) ( 2 2 ) = 4 ( 3 + 2 2 ) 2 = 3 + 2 2
And 4 1 7 − 1 2 2 = 4 ( 3 − 2 2 ) 2 = 3 − 2 2
Notice that 3 − 2 2 1 × 3 + 2 2 3 + 2 2 = 9 − 8 3 + 2 2 = 3 + 2 2
Hence 3 + 2 2 = 3 − 2 2 1 = ( 3 − 2 2 ) − 1
Thus ( 3 − 2 2 ) sin 2 x + sin 2 x 1 + ( 3 − 2 2 ) − ( sin 2 x + sin 2 x 1 ) = 6
Take 3 − 2 2 = t ⇔ t y + t − y = 6 where y = sin 2 x + sin 2 x 1
So t y + t − y = t y + t y 1 = 6 ⇔ t 2 y + 1 = 6 t y
⇔ ( t y ) 2 − 6 t y + 1 = 0
( t y ) 2 − 2 ( 3 ) t y + 9 − 9 + 1 = 0
⇔ ( t y − 3 ) 2 − 8 = 0 ⇔ ( t y − 3 ) 2 = 8 ⇔ t y = 3 ± 2 2
So if y = 1 ⇔ sin 2 x + sin 2 x 1 = 1 notice that f ( x ) = sin 2 x + sin 2 x 1 is defined when sin 2 x > 0 so u ( x ) = sin 2 x belong to the first and second quadrant hence 2 x ∈ [ 0 , π ]
Thus x ∈ [ 0 , 2 π ]
If t y = 3 − 2 2 ⇔ t y = t 2 ⇔ y = 2
If t y = 3 + 2 2 = 3 − 2 2 1 = t − 2 ⇔ y = − 2 rejected since y > 0
So u ( x ) + u ( x ) 1 = 2 ⇔ u ( x ) + 1 = 2 u ( x ) ⇔ u 2 ( x ) + 1 + 2 u ( x ) = 4 u ( x )
⇔ u 2 ( x ) − 2 u ( x ) + 1 = 0 ⇔ ( u ( x ) − 1 ) 2 = 0 ⇔ u ( x ) = 1 ⇔ sin 2 x = 1
⇔ sin 2 x = sin ( 2 π ) ⇔ 2 x = 2 π + 2 k π o r π − 2 x = 2 π + 2 k π , k ∈ Z
So x = 4 π + k π o r x = 4 π − k π , k ∈ Z since x ∈ [ 0 , 2 π ] So x = 4 π is the accepted value