Find the real root for this equation

Geometry Level 3

( 17 12 2 4 ) sin 2 x + 1 sin 2 x + ( 17 + 12 2 4 ) sin 2 x + 1 sin 2 x = 6 \large{{{\left( \sqrt[4]{17-12\sqrt{2}} \right)}^{\sqrt{\sin 2x}+\frac{1}{\sqrt{\sin 2x}}}}+{{\left( \sqrt[4]{17+12\sqrt{2}} \right)}^{\sqrt{\sin 2x}+\frac{1}{\sqrt{\sin 2x}}}}=6}

Find real number x [ 0 , π 2 ] x \in [0, \frac{ \pi } { 2} ] satisfying the equation above.


The answer is 0.785398.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ramez Hindi
May 31, 2015

Solution: we have 17 + 12 2 4 = 17 + 2 ( 3 ) ( 2 2 ) 4 \sqrt[4]{17+12\sqrt{2}}=\sqrt[4]{17+2\left( 3 \right)\left( 2\sqrt{2} \right)}

= 9 + 8 + 2 ( 3 ) ( 2 2 ) 4 = ( 3 + 2 2 ) 2 4 = 3 + 2 2 =\sqrt[4]{9+8+2\left( 3 \right)\left( 2\sqrt{2} \right)}=\sqrt[4]{{{\left( 3+2\sqrt{2} \right)}^{2}}}=\sqrt{3+2\sqrt{2}}

And 17 12 2 4 = ( 3 2 2 ) 2 4 = 3 2 2 \sqrt[4]{17-12\sqrt{2}}=\sqrt[4]{{{\left( 3-2\sqrt{2} \right)}^{2}}}=\sqrt{3-2\sqrt{2}}

Notice that 1 3 2 2 × 3 + 2 2 3 + 2 2 = 3 + 2 2 9 8 = 3 + 2 2 \frac{1}{\sqrt{3-2\sqrt{2}}}\times \frac{\sqrt{3+2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}}=\frac{\sqrt{3+2\sqrt{2}}}{9-8}=\sqrt{3+2\sqrt{2}}

Hence 3 + 2 2 = 1 3 2 2 = ( 3 2 2 ) 1 \sqrt{3+2\sqrt{2}}=\frac{1}{\sqrt{3-2\sqrt{2}}}={{\left( \sqrt{3-2\sqrt{2}} \right)}^{-1}}

Thus ( 3 2 2 ) sin 2 x + 1 sin 2 x + ( 3 2 2 ) ( sin 2 x + 1 sin 2 x ) = 6 {{\left( \sqrt{3-2\sqrt{2}} \right)}^{\sqrt{\sin 2x}+\frac{1}{\sqrt{\sin 2x}}}}+{{\left( \sqrt{3-2\sqrt{2}} \right)}^{-\left( \sqrt{\sin 2x}+\frac{1}{\sqrt{\sin 2x}} \right)}}=6

Take 3 2 2 = t t y + t y = 6 \sqrt{3-2\sqrt{2}}=t\Leftrightarrow {{t}^{y}}+{{t}^{-y}}=6 where y = sin 2 x + 1 sin 2 x y=\sqrt{\sin 2x}+\frac{1}{\sqrt{\sin 2x}}

So t y + t y = t y + 1 t y = 6 t 2 y + 1 = 6 t y {{t}^{y}}+{{t}^{-y}}={{t}^{y}}+\frac{1}{{{t}^{y}}}=6\Leftrightarrow {{t}^{2y}}+1=6{{t}^{y}}

( t y ) 2 6 t y + 1 = 0 \Leftrightarrow {{\left( {{t}^{y}} \right)}^{2}}-6{{t}^{y}}+1=0

( t y ) 2 2 ( 3 ) t y + 9 9 + 1 = 0 {{\left( {{t}^{y}} \right)}^{2}}-2\left( 3 \right){{t}^{y}}+9-9+1=0

( t y 3 ) 2 8 = 0 ( t y 3 ) 2 = 8 t y = 3 ± 2 2 \Leftrightarrow {{\left( {{t}^{y}}-3 \right)}^{2}}-8=0\Leftrightarrow {{\left( {{t}^{y}}-3 \right)}^{2}}=8\Leftrightarrow {{t}^{y}}=3\pm 2\sqrt{2}

So if y = 1 sin 2 x + 1 sin 2 x = 1 y=1\Leftrightarrow \sqrt{\sin 2x}+\frac{1}{\sqrt{\sin 2x}}=1 notice that f ( x ) = sin 2 x + 1 sin 2 x f\left( x \right)=\sqrt{\sin 2x}+\frac{1}{\sqrt{\sin 2x}} is defined when sin 2 x > 0 \sin 2x>0 so u ( x ) = sin 2 x u\left( x \right)=\sin 2x belong to the first and second quadrant hence 2 x [ 0 , π ] 2x\in \left[ 0,\pi \right]

Thus x [ 0 , π 2 ] x\in \left[ 0,\frac{\pi }{2} \right]

If t y = 3 2 2 t y = t 2 y = 2 {{t}^{y}}=3-2\sqrt{2}\Leftrightarrow {{t}^{y}}={{t}^{2}}\Leftrightarrow y=2

If t y = 3 + 2 2 = 1 3 2 2 = t 2 y = 2 {{t}^{y}}=3+2\sqrt{2}=\frac{1}{3-2\sqrt{2}}={{t}^{-2}}\Leftrightarrow y=-2 rejected since y > 0 y>0

So u ( x ) + 1 u ( x ) = 2 u ( x ) + 1 = 2 u ( x ) u 2 ( x ) + 1 + 2 u ( x ) = 4 u ( x ) \sqrt{u\left( x \right)}+\frac{1}{\sqrt{u\left( x \right)}}=2\Leftrightarrow u\left( x \right)+1=2\sqrt{u\left( x \right)}\Leftrightarrow {{u}^{2}}\left( x \right)+1+2u\left( x \right)=4u\left( x \right)

u 2 ( x ) 2 u ( x ) + 1 = 0 ( u ( x ) 1 ) 2 = 0 u ( x ) = 1 sin 2 x = 1 \Leftrightarrow {{u}^{2}}\left( x \right)-2u\left( x \right)+1=0\Leftrightarrow {{\left( u\left( x \right)-1 \right)}^{2}}=0\Leftrightarrow u\left( x \right)=1\Leftrightarrow \sin 2x=1

sin 2 x = sin ( π 2 ) 2 x = π 2 + 2 k π o r π 2 x = π 2 + 2 k π , k Z \Leftrightarrow \sin 2x=\sin \left( \frac{\pi }{2} \right)\Leftrightarrow 2x=\frac{\pi }{2}+2k\pi \,\,or\,\,\,\pi -2x=\frac{\pi }{2}+2k\pi \,\,\,\,,\,\,\,k\in \mathbb{Z}

So x = π 4 + k π o r x = π 4 k π , k Z x=\frac{\pi }{4}+k\pi \,\,\,\,or\,\,\,\,\,x=\frac{\pi }{4}-k\pi \,\,\,\,\,,\,\,k\in \mathbb{Z} since x [ 0 , π 2 ] x\in \left[ 0,\frac{\pi }{2} \right] So x = π 4 x=\frac{\pi }{4} is the accepted value

Assuming that ( a ± b 2 ) 4 = 17 ± 12 2 (a \pm b \sqrt 2)^4 = 17 \pm 12\sqrt 2 17 ± 12 2 4 = a ± b 2 \implies \sqrt [4] {17 \pm 12\sqrt 2} = a \pm b \sqrt 2 .

( a ± b 2 ) 4 = 17 ± 12 2 a 4 ± 4 a 3 b 2 + 12 a 2 b 2 ± 8 a b 3 2 + 4 b 4 = 17 ± 12 2 \begin{aligned} (a \pm b \sqrt 2)^4 & = 17 \pm 12\sqrt 2 \\ a^4 \pm 4a^3b\sqrt 2 + 12a^2b^2 \pm 8ab^3\sqrt 2 + 4b^4 & = 17 \pm 12\sqrt 2 \end{aligned}

Equating the rational and irrational parts, we have:

{ a 4 + 12 a 2 b 2 + 4 b 4 = 17 4 a 3 b + 8 a b 3 = 12 a 3 b + 2 a b 3 = 3 \begin{cases} a^4 + 12a^2b^2 + 4b^4 = 17 \\ 4a^3b + 8ab^3 = 12 \implies a^3b + 2ab^3 = 3 \end{cases}

By observation, we note that a = b = 1 a = b = 1 . 17 ± 12 2 4 = 1 ± 2 \implies \sqrt [4] {17 \pm 12\sqrt 2} = 1 \pm \sqrt 2 .

Let y = sin 2 x + 1 sin 2 x y = \sqrt{\sin 2x} + \dfrac 1{\sqrt{\sin 2x}} . Then we have:

\begin{aligned} X & = \left(\sqrt [4] {17 - 12\sqrt 2}\right)^y + \left(\sqrt [4] {17 + 12\sqrt 2}\right)^y \\ & = \left(1-\sqrt 2 \right)^\color{#3D99F6}{y} + \left(1+\sqrt 2 \right)^\color{#3D99F6}{y} & \small \color{#3D99F6}{\text{By observation }y=2} \\ & = \left(1-\sqrt 2 \right)^\color{#3D99F6}{2} + \left(1+\sqrt 2 \right)^\color{#3D99F6}{2} \\ & = 1 - 2\sqrt 2 + 2 + 1 + 2\sqrt 2 + 2 \\ & = 6 \end{aligned}

sin 2 x + 1 sin 2 x = 2 Let u = sin 2 x u + 1 u = 2 u 2 2 u + 1 = 0 ( u 1 ) 2 = 0 u = 1 sin 2 x = 1 sin 2 x = 1 x = π 4 0.785 \begin{aligned} \implies \color{#3D99F6}{\sqrt{\sin 2x}} + \dfrac 1{\color{#3D99F6}{\sqrt{\sin 2x}}} & = 2 & \small \color{#3D99F6}{\text{Let }u = \sqrt{\sin 2x}} \\ u + \frac 1u & = 2 \\ u^2 - 2u + 1 & = 0 \\ (u-1)^2 & = 0 \\ u & = 1 \\ \implies \sqrt{\sin 2x} & = 1 \\ \sin 2x & = 1 \\ \implies x & = \frac \pi 4 \approx \boxed{0.785} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...