Find the recurrence.

Geometry Level 4

Let a a and b b ( with a < b a < b ) be positive numbers satisfying

a 1 = a + b 2 , b 1 = a 1 b a_1 = \dfrac{a+b}{2}, \ b_1 = \sqrt{a_1 b}

Let a n = a n 1 + b n 1 2 a_n = \dfrac{a_{n-1} + b_{n-1}}{2} and b n = a n b n 1 b_n = \sqrt{a_n b_{n-1}} for n 2 n \ge 2 .

Show that lim n a n = lim n b n \displaystyle \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n . What is the value of this limit?

b 2 a 2 arccos ( b a ) \dfrac{\sqrt{b^2-a^2}}{\arccos \left(\frac{b}{a}\right)} b 2 a 2 arccos ( a b ) \dfrac{\sqrt{b^2-a^2}}{\arccos \left(\frac{a}{b}\right)} a 2 b 2 arccos ( a b ) \dfrac{\sqrt{a^2-b^2}}{\arccos \left(\frac{a}{b}\right)} a 2 b 2 arccos ( b a ) \dfrac{\sqrt{a^2-b^2}}{\arccos \left(\frac{b}{a}\right)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Sep 19, 2017

If we write a = b cos θ a = b\cos\theta , then it is a simple induction to show that a n = b n cos ( θ 2 n ) b n = b j = 1 n cos ( θ 2 j ) n N a_n \; = \; b_n \cos\big(\tfrac{\theta}{2^n}\big) \hspace{1cm} b_n \; = \; b\prod_{j=1}^n \cos\big(\tfrac{\theta}{2^j}\big) \hspace{2cm} n \in \mathbb{N} Moreover it follows that 2 n sin ( θ 2 n ) b n = b 2 n sin ( θ 2 n ) × j = 1 n cos ( θ 2 j ) = b sin θ 2^n \sin\big(\tfrac{\theta}{2^n}\big)\,b_n \; = \; b2^n \sin\big(\tfrac{\theta}{2^n}\big) \times \prod_{j=1}^n \cos\big(\tfrac{\theta}{2^j}\big) \; = \; b\sin\theta and hence that b n = b sin θ 2 n sin ( θ 2 n ) b sin θ θ = b 2 a 2 cos 1 a b n b_n \; = \; \frac{b\sin\theta}{2^n \sin\big(\tfrac{\theta}{2^n}\big)} \; \to \; \frac{b\sin\theta}{\theta} \; = \; \frac{\sqrt{b^2-a^2}}{\cos^{-1}\tfrac{a}{b}} \hspace{2cm} n \to \infty It is clear that a n a_n also converges to the same limit.

Since b>a only 2nd or forth can be the solution. Cos is never greater than 1. So the solution is 2nd only.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...