Find the region

Calculus Level 4

Let 2 ( f ( x ) ) 2 d 2 f ( x ) d x 2 f ( x ) + ( d f ( x ) d x ) 2 = 0 2{ \left( f\left( x \right) \right) }^{ 2 }-\frac { { d }^{ 2 }f\left( x \right) }{ d{ x }^{ 2 } } f\left( x \right) +{ \left( \frac { df\left( x \right) }{ dx } \right) }^{ 2 }=0 and f ( 0 ) = f ( 1 ) = 1 f\left( 0 \right) =f\left( 1 \right) =-1

Then the area of the region bounded by y=0, x=0, x=1 and y = ( 2 x 1 ) f ( x ) y=\left( 2x-1 \right) f\left( x \right) is 2 ( 1 1 e 1 / a ) 2\left( 1-\frac { 1 }{ { e }^{ { 1 }/{ a } } } \right)

Then the value of a is???


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nishant Sharma
Jul 5, 2014

Rearranging the given differential equation we get

2 = d f ( x ) f ( x ) \displaystyle2=\mathrm d \frac{f'(x)}{f(x)}

Integrating twice w.r.t x x we get x 2 + a x + b = ln f ( x ) \displaystyle\,x^2+ax+b=\ln f(x) for some a , b C a,b\in\mathbb{C} . Now using initial conditions of f ( 0 ) = f ( 1 ) = 1 f(0)=f(1)=-1 we get a = 1 , b = i π a=-1,\,b=i\pi . So y = ( 1 2 x ) e x 2 x = Y \displaystyle\,y=(1-2x)e^{x^2-x}=Y (say).

Here is the plot of the required area(in red)

Graph Graph

So area = 0 1 2 Y d x 1 2 1 Y d x = 2 ( 1 1 e 1 4 ) \displaystyle=\int\limits_{0}^{\frac{1}{2}} Y\,\mathrm d x-\int\limits_\frac{1}{2}^1 Y\,\mathrm d x=2\left(1-\frac{1}{e^{\frac{1}{4}}}\right) . So a = 4 a=\boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...