Find the remainder

Find the remainder when the number 1989 × 1990 × 1991 + 199 3 3 1989\times1990\times1991+1993^3 is divided by 7.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1989 1990 1991 + 199 3 3 1 2 3 + 5 3 (mod 7) 6 + 125 (mod 7) 6 + 6 (mod 7) 5 (mod 7) \begin{aligned} 1989 \cdot 1990 \cdot 1991 + 1993^3 & \equiv 1\cdot 2\cdot 3 + 5^3 \text{ (mod 7)} \\ & \equiv 6 + 125 \text{ (mod 7)} \\ & \equiv 6 + 6 \text{ (mod 7)} \\ & \equiv \boxed{5} \text{ (mod 7)} \end{aligned}

Md Zuhair
Oct 4, 2016

For 1989 = 1 mod(7) \text{1989 = 1 mod(7)} And for 1990 = 2 mod(7) \text{1990 = 2 mod(7)} and 1991 = 3 mod(7) \text{1991 = 3 mod(7)} , Then For 1993 = 4 mod 7 \text{1993 = 4 mod 7} or 199 3 3 = 64 mod(7) 1993^3= \text{64 mod(7)} = 1 mod(7) \text{1 mod(7)} . Now Multiplying First 3 and adding with the fourth we get 1989 1990 1991 + 199 3 3 1989·1990·1991+1993^3 = 7 mod (7) \text{7 mod (7)} = 0 mod 7 \text{0 mod 7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...