Find the remainder of the factorials

Level 2

( 1 × 1 ! ) + ( 2 × 2 ! ) + ( 3 × 3 ! ) + . . . + ( 10 × 10 ! ) = P \large (1×1!)+(2×2!)+(3×3!)+...+(10×10!)=P Find the remainder when ( P + 2 ) ( P+2) is divided by 11.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 22, 2018

P = n = 1 10 n × n ! = n = 1 10 ( ( n + 1 ) × n ! n ! ) = n = 1 10 ( ( n + 1 ) ! n ! ) = 11 ! 1 ! P + 2 = 11 ! 1 + 2 ( 11 ! + 1 ) (mod 11) 1 (mod 11) \begin{aligned} P & = \sum_{n=1}^{10} n\times n! \\ & = \sum_{n=1}^{10} \left((n+1)\times n! - n!\right) \\ & = \sum_{n=1}^{10} \left((n+1)! - n!\right) \\ & = 11! - 1! \\ \implies P+2 & = 11! - 1 + 2 \\ & \equiv (11!+1) \text{ (mod 11)} \\ & \equiv \boxed{1} \text{ (mod 11)} \end{aligned}

P + 2 = 2 + ( 1 × 1 ! ) + ( 2 × 2 ! ) . . . . + ( 10 × 10 ! ) P+2=2+(1×1!)+(2×2!)....+(10×10!) = 1 + 1 + ( 1 × 1 ! ) + ( 2 × 2 ! ) . . . . . . . + ( 10 × 10 ! ) =1+1+(1×1!)+(2×2!).......+(10×10!) = 1 + 1 + 1 + 4 + ( 3 × 3 ! ) + ( 4 × 4 ! ) . . . + ( 10 × 10 ! ) =1+1+1+4+(3×3!)+(4×4!)...+(10×10!) = 1 + 6 + ( 3 × 3 ! ) + ( 4 × 4 ! ) . . . . . . + ( 10 × 10 ! ) =1+6+(3×3!)+(4×4!)......+(10×10!) = 1 + 3 ! + ( 3 × 3 ! ) + ( 4 × 4 ! ) . . . . + ( 10 × 10 ! ) =1+3!+(3×3!)+(4×4!)....+(10×10!) = 1 + 3 ! ( 1 + 3 ) + ( 4 × 4 ! ) . . . . + ( 10 × 10 ! ) =1+3!(1+3)+(4×4!)....+(10×10!) = 1 + 4 ! + ( 4 × 4 ! ) . . . . + ( 10 × 10 ! ) =1+4!+(4×4!)....+(10×10!) = 1 + 4 ! ( 1 + 4 ) + ( 5 × 5 ! ) . . . + ( 10 × 10 ! ) =1+4!(1+4)+(5×5!)...+(10×10!) = 1 + 5 ! + ( 5 × 5 ! ) . . . + ( 10 × 10 ! ) =1+5!+(5×5!)...+(10×10!) Similarly = 1 + 10 ! + ( 10 × 10 ! ) =1+10!+(10×10!) = 1 + 11 ! =1+11! Then P+2 divided by 11 = ( 1 + 11 ! ) / 11 =(1+11!)/11 = 1 / 11 + 11 ! / 11 =1/11 +11!/11 Thus remainder will be 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...