( 1 × 1 ! ) + ( 2 × 2 ! ) + ( 3 × 3 ! ) + . . . + ( 1 0 × 1 0 ! ) = P Find the remainder when ( P + 2 ) is divided by 11.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
P + 2 = 2 + ( 1 × 1 ! ) + ( 2 × 2 ! ) . . . . + ( 1 0 × 1 0 ! ) = 1 + 1 + ( 1 × 1 ! ) + ( 2 × 2 ! ) . . . . . . . + ( 1 0 × 1 0 ! ) = 1 + 1 + 1 + 4 + ( 3 × 3 ! ) + ( 4 × 4 ! ) . . . + ( 1 0 × 1 0 ! ) = 1 + 6 + ( 3 × 3 ! ) + ( 4 × 4 ! ) . . . . . . + ( 1 0 × 1 0 ! ) = 1 + 3 ! + ( 3 × 3 ! ) + ( 4 × 4 ! ) . . . . + ( 1 0 × 1 0 ! ) = 1 + 3 ! ( 1 + 3 ) + ( 4 × 4 ! ) . . . . + ( 1 0 × 1 0 ! ) = 1 + 4 ! + ( 4 × 4 ! ) . . . . + ( 1 0 × 1 0 ! ) = 1 + 4 ! ( 1 + 4 ) + ( 5 × 5 ! ) . . . + ( 1 0 × 1 0 ! ) = 1 + 5 ! + ( 5 × 5 ! ) . . . + ( 1 0 × 1 0 ! ) Similarly = 1 + 1 0 ! + ( 1 0 × 1 0 ! ) = 1 + 1 1 ! Then P+2 divided by 11 = ( 1 + 1 1 ! ) / 1 1 = 1 / 1 1 + 1 1 ! / 1 1 Thus remainder will be 1
Problem Loading...
Note Loading...
Set Loading...
P ⟹ P + 2 = n = 1 ∑ 1 0 n × n ! = n = 1 ∑ 1 0 ( ( n + 1 ) × n ! − n ! ) = n = 1 ∑ 1 0 ( ( n + 1 ) ! − n ! ) = 1 1 ! − 1 ! = 1 1 ! − 1 + 2 ≡ ( 1 1 ! + 1 ) (mod 11) ≡ 1 (mod 11)