Find the root of the answer (2)

Algebra Level 4

x 2 4 x + 13 = 0 \large x^2-4x+13=0

If α \alpha and β \beta are roots of the equation above, find α 4 + β 3 + α 2 39 β + 2264 \alpha^4+\beta^3+\alpha^2-39\beta+2264 .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Vieta's Formula Problem Solving - Basic

x 2 4 x + 13 = 0 \begin{aligned} x^2 - 4x + 13 & = 0 \end{aligned}

x 2 = 4 x 13 α 2 = 4 α 13 , since α is a root. x 3 = 4 x 2 13 x = 4 ( 4 x 13 ) 13 x = 3 x 52 β 3 = 3 β 52 x 4 = 3 x 2 52 x = 3 ( 4 x 13 ) 52 x = 40 x 39 α 4 = 40 α 39 \begin{aligned} \implies x^2 & = 4x - 13 & \small \color{#3D99F6}{\implies \alpha^2 = 4\alpha - 13 \text{, since } \alpha \text{ is a root.}} \\ \implies x^3 & = 4x^2 - 13x \\ & = 4(4x - 13) - 13x \\ & = 3x - 52 & \small \color{#3D99F6}{\implies \beta^3 = 3\beta - 52} \\ \implies x^4 & = 3x^2 - 52x \\ & = 3(4x - 13) - 52x \\ & = -40x - 39 & \small \color{#3D99F6}{\implies \alpha^4 = -40\alpha - 39} \end{aligned}

Then, we have:

X = α 4 + β 3 + α 2 39 β + 2264 = 40 α 39 + 3 β 52 + 4 α 13 39 β + 2264 = 36 α 36 β + 2160 = 36 ( α + β ) + 2160 By Vieta’s formula: α + β = 4 = 36 ( 4 ) + 2160 = 144 + 2160 = 2016 \begin{aligned} X & = \alpha^4 + \beta^3 + \alpha^2 - 39\beta + 2264 \\ & = -40\alpha - 39 + 3\beta - 52 + 4\alpha - 13 - 39\beta + 2264 \\ & = - 36 \alpha -36 \beta + 2160 \\ & = -36(\color{#3D99F6}{\alpha+\beta}) + 2160 \quad \quad \small \color{#3D99F6}{\text{By Vieta's formula: }\alpha + \beta = 4} \\ & = -36(\color{#3D99F6}{4}) + 2160 \\ & = -144 + 2160 \\ & = \boxed{2016} \end{aligned}

Thank you ! I became lazy recently but you are still working hard all the time . Your solution is always clear .

Tommy Li - 4 years, 9 months ago

α 4 + α 2 + β 3 39 β + 2264 \Rightarrow \alpha^4+\alpha^2+\beta^3-39\beta+2264

= α 2 4 α 13 ( α 2 + 1 ) + β 3 4 β 2 13 β 39 β + 2264 =\underbrace{\color{#BA33D6}{\alpha^2}}_{\color{#20A900}{4\alpha}-13}(\color{#BA33D6}{\alpha^2}+1)+\underbrace{\color{#3D99F6}{\beta^3}}_{4\beta^2-13\beta}-39\beta+2264

= ( 16 4 β 13 ) ( 16 4 β 12 ) + 4 β 2 52 β + 2264 =(16-4\beta-13)(16-4\beta-12)+4\beta^2 -52\beta+2264

= ( 3 4 β ) ( 4 4 β ) + 4 β 2 52 β + 2264 =(3-4\beta)(4-4\beta)+4\beta^2-52\beta+2264

= 12 12 β 16 β 52 β + 16 β 2 + 4 β 2 + 2264 =12-12\beta-16\beta-52\beta+16\beta^2+4\beta^2+2264

= 20 β 2 80 β + 2276 =\color{#EC7300}{20\beta^2-80\beta}+2276

2276 260 = 2016 \implies 2276-260=\boxed{2016}


•Using Vieta's Formula .

α + β = 4 \alpha+\beta=4
4 α = 16 4 β \implies \color{#20A900}{4\alpha}=16-4\beta

•Since α \alpha is root of x 2 4 x + 13 = 0 x^2-4x+13=0 ,

α 2 = 4 α 13 \implies \color{#BA33D6}{\alpha^2}=4\alpha-13

Also β \beta is root of x 2 4 x + 13 = 0 x^2-4x+13=0 ,

β 3 = 4 β 2 13 β \implies \color{#3D99F6}{\beta^3}=4\beta^2-13\beta .

And,

Multiplying by 20 20 both sides.

20 β 2 80 β + 260 = 0 \implies \color{#EC7300}{20\beta^2-80\beta}+260=0

Yatin Khanna
Sep 4, 2016

We have:
α 2 4 α + 13 = 0 \alpha^2 - 4\alpha + 13 =0 ;.................... ( 1 ) (1)
β 2 4 β + 13 = 0 \beta^2-4\beta + 13 =0 ;............................ ( 2 ) (2)
Now,
α 2 = 4 α 13 α 4 = 16 α 2 + 169 104 α \alpha^2 = 4\alpha - 13 \implies \alpha^4 = 16\alpha^2 + 169 - 104\alpha
β 2 = 4 β 13 β 3 = 4 β 2 13 β \beta^2 = 4\beta - 13 \implies \beta^3 = 4\beta^2 - 13\beta
Therefore,
α 4 + β 3 + α 2 39 α + 2264 = 17 α 2 104 α + 4 β 2 52 β + 2433 \alpha^4 + \beta^3 + \alpha^2 - 39\alpha + 2264 = 17\alpha^2-104\alpha + 4 \beta^2-52\beta+2433
[Multiplying ( 1 ) (1) by 17 and ( 2 ) (2) by 4 and then subtracting both from the equation];
= 36 ( α + β ) + 2160 -36(\alpha+\beta) + 2160
= 36 ( 4 ) + 2160 -36*(4)+ 2160 (Since, α + β = 4 \color{#3D99F6} {\alpha + \beta=4} , by Vieta's Formula.)
= 2016 \boxed{2016}



Ankush Gogoi
Sep 14, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...