Find the root

Algebra Level 3

1 x 2 + 3 + 1 1 + 3 x 2 = 2 x + 1 \frac { 1 }{ \sqrt { { x }^{ 2 }+3 } } +\frac { 1 }{ \sqrt { 1+3{ x }^{ 2 } } } =\frac { 2 }{ x+1 }

Find the sum of all real x > 1 x > -1 satisfying the equation above.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Apr 22, 2017

The above equation is the same as

x + 1 x 2 + 3 + x + 1 1 + 3 x 2 = 2 ( 1 ) \frac { x+1 }{ \sqrt { { x }^{ 2 }+3 } } +\frac { x+1 }{ \sqrt { 1+3{ x }^{ 2 } } } =2\quad\quad (1)

Let a = x + 1 x 2 + 3 , b = x + 1 1 + 3 x 2 a=\frac { x+1 }{ \sqrt { { x }^{ 2 }+3 } } ,\quad b=\frac { x+1 }{ \sqrt { 1+3{ x }^{ 2 } } } then a > 0 , b > 0 a>0,\quad b>0 .

We also notice that

a 2 + b 2 2 = ( x + 1 ) 2 x 2 + 3 + ( x + 1 ) 2 1 + 3 x 2 2 = 2 ( x 1 ) 4 ( x 2 + 3 ) ( 1 + 3 x 2 ) 0 a 2 + b 2 2 ( a + b ) 2 2 ( a 2 + b 2 ) 4 0 < a + b 2. L H S ( 1 ) R H S ( 1 ) { a }^{ 2 }+{ b }^{ 2 }-2=\frac { { \left( x+1 \right) }^{ 2 } }{ { x }^{ 2 }+3 } +\frac { { \left( x+1 \right) }^{ 2 } }{ 1+3{ x }^{ 2 } } -2=\frac { -2{ \left( x-1 \right) }^{ 4 } }{ \left( { x }^{ 2 }+3 \right) \left( 1+3{ x }^{ 2 } \right) } \le 0\\ \Longrightarrow { a }^{ 2 }+{ b }^{ 2 }\le 2\Longrightarrow { \left( a+b \right) }^{ 2 }\le 2\left( { a }^{ 2 }+{ b }^{ 2 } \right) \le 4\\ \Longrightarrow 0<a+b\le 2.\\ \Longrightarrow LHS\left( 1 \right) \le RHS\left( 1 \right)

The equality holds when x = 1 x=1 . Hence, 1 \boxed { 1 } is the only root of the provided equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...