Find the series, then we'll talk

Algebra Level 4

( 1 × 1 ) + ( 2 × 3 ) + ( 3 × 6 ) + ( 4 × 10 ) + ( 5 × 15 ) + ( 6 × 21 ) + (1\times 1) +( 2\times 3) + (3\times 6) + (4\times 10) + (5\times 15) + (6\times 21) +\ldots

Find the sum to 50 terms of the summation above.


The answer is 834275.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I could find out that the series went something like this:

1 × 1 ( 1 + 1 ) 2 + 2 × 2 ( 2 + 1 ) 2 + 3 × 3 ( 3 + 1 ) 2 + 1\times \dfrac{1(1+1)}{2} + 2\times \dfrac{2(2+1)}{2} + 3 \times \dfrac{3(3+1)}{2} + \ldots

So, by inference, we can realize that the n t h n^{th} term (denoted here by t n t_n ) is:

t n = n × n ( n + 1 ) 2 t_n = n\times \dfrac{n(n+1)}{2}

We need to find

n = 1 50 n 3 + n 2 2 = S \displaystyle \sum_{n=1}^{50} \dfrac{n^3 + n^2}{2} = S

S = n = 1 50 n 3 2 + n = 1 50 n 2 2 \Rightarrow S = \displaystyle \sum_{n=1}^{50} \dfrac{n^3}{2} + \sum_{n=1}^{50} \dfrac{n^2}{2}

2 S = ( 50 × 51 2 ) 2 + 50 × 51 × 101 6 = 1625625 + 42925 = 1668550 \Rightarrow 2S = \left(\dfrac{50\times 51}{2}\right)^2 + \dfrac{50 \times 51 \times 101}{6} = 1625625 + 42925 = 1668550

S = 1668550 2 = 834275 \Rightarrow S = \dfrac{1668550}{2} = \boxed{834275}

Moderator note:

Simple standard approach.

Exactly Same Solution.

Kushagra Sahni - 5 years, 9 months ago

Log in to reply

My also......Searching for any other shortcut...

Prasad Nikam - 5 years, 6 months ago

Use this java programme

class brilliant3
{
public static void main(String args[])
{
int x=0;
for(int i=1,f=1;i<=50;i++,f+=i)
{
x+=i*f;
}
System.out.println("sum is"+x);
}
}



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...