Find the shaded area

Geometry Level 2

A B C \triangle ABC is a right triangle at B B , with A B = 20 AB=20 and B C = 10 BC=10 . B C P \triangle BCP is right triangle at P P , with B C = 10 BC=10 , B P = 6 BP=6 , and C P = 8 CP=8 . Find the area of A C P \triangle ACP .


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
May 13, 2020

The area of A C P \triangle ACP is given by:

[ A C P ] = [ A B C ] [ B C P ] [ A B P ] = 20 × 10 2 6 × 8 2 1 2 × A B × B P sin A B P Note that A B P = B C P = 100 24 20 × 6 × 0.6 2 and sin B C P = 6 10 = 100 24 36 = 40 \begin{aligned} [ACP] & = [ABC]-[BCP]-[ABP] \\ & = \frac {20\times 10}2 - \frac {6\times 8}2 - \frac 12 \times AB \times BP \sin \blue{\angle ABP} & \small \blue{\text{Note that }\angle ABP = \angle BCP} \\ & = 100 - 24 - \frac {20 \times 6 \times \blue{0.6}}2 & \small \blue{\text{and }\sin \angle BCP = \frac 6{10}} \\ & = 100 - 24 - 36 = \boxed{40} \end{aligned}

Marvin Kalngan
May 12, 2020

Let P B C = θ \angle PBC=\theta and P C B = β \angle PCB=\beta , then

P B A = A B C P B C = 9 0 θ = β \angle PBA=\angle ABC-\angle PBC=90^\circ - \theta = \beta

So P A B = θ \angle PAB=\theta and A P B \triangle APB is a right triangle.

cos θ = A P 20 = 6 10 \cos \theta=\dfrac{AP}{20}=\dfrac{6}{10}

A P = 12 AP=12

The area of the shaded region colored blue is 1 2 [ 20 × 10 8 × 6 6 × 12 ] = 40 \dfrac{1}{2}[20\times10-8\times 6-6\times 12]=\boxed{40}

Cantdo Math
May 12, 2020

s i n ( P B A ) = 6 10 sin( \angle{PBA})=\frac{6}{10}

Then the area is simply ,

1 2 20 10 1 2 8 10 1 2 6 20 6 10 = 40 \frac{1}{2} *20*10 - \frac{1}{2} *8 * 10 - \frac{1}{2} *6*20* \frac{6}{10} = 40

A C = 2 0 2 + 1 0 2 = 10 5 |\overline {AC}|=\sqrt {20^2+10^2}=10\sqrt 5 .

tan A C B = 2 , tan P C B = 3 4 tan A C P = 2 3 4 1 + 3 2 = 1 2 sin A C P = 1 5 \tan \angle {ACB}=2,\tan \angle {PCB}=\dfrac{3}{4}\implies \tan \angle {ACP}=\dfrac{2-\frac{3}{4}}{1+\frac{3}{2}}=\dfrac{1}{2}\implies \sin \angle {ACP}=\dfrac{1}{\sqrt 5} .

So, area of A C P = 1 2 × A C × P C × sin A C P = 1 2 × 10 5 × 8 × 1 5 = 40 \triangle {ACP}=\dfrac{1}{2}\times |\overline {AC}|\times |\overline {PC}|\times \sin \angle {ACP}=\dfrac{1}{2}\times 10\sqrt 5\times 8\times \dfrac{1}{\sqrt 5}=\boxed {40} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...