Find the shape of A B C \triangle ABC

Geometry Level 2

In A B C \triangle ABC , the opposite sides of A \angle A , B \angle B , and C \angle C are a a , b b , and c c respectively.

If c a cos B = ( 2 a b ) cos A c-a\cos B= (2a-b) \cos A , what is the shape of A B C \triangle ABC ?

Isosceles triangle or right triangle Isosceles triangle Right triangle Isosceles and right triangle

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Applying cosine rule to A B C \triangle {ABC} we get c a × c 2 + a 2 b 2 2 c a = ( 2 a b ) × b 2 + c 2 a 2 2 b c b ( c 2 a 2 + b 2 ) = ( 2 a b ) ( b 2 + c 2 a 2 ) a 2 = b 2 + c 2 c-a\times \dfrac{c^2+a^2-b^2}{2ca}=(2a-b)\times \dfrac{b^2+c^2-a^2}{2bc}\implies b(c^2-a^2+b^2)=(2a-b)(b^2+c^2-a^2)\implies a^2=b^2+c^2 or b = 2 a b b = a b=2a-b\implies b=a . Therefore A B C \triangle {ABC} is either isosceles triangle or right triangle .

Something is amiss with your algebra. Consider a 30-60-90 triangle with a = 1 a = 1 , c = 3 c = \sqrt{3} , and b = 2 b = 2 . This satisfies the original equation as cos B = 0 \cos B = 0 and ( 2 a b ) = 0 (2a - b) = 0 . But b ( c 2 a 2 + b 2 ) 0 b(c^2 - a^2 + b^2) \neq 0 .

Your \implies symbol is doing a lot of work and appears to have covered up an error. The right triangle I've found has b b as the length of the hypotenuse, not a a .

Richard Desper - 1 year, 3 months ago

Log in to reply

The 30-60-90 triangle with a = 1 a = 1 , c = 3 c = \sqrt{3} , and b = 2 b = 2 does not satisfy the original equation, because then

c a cos B = ( 2 a b ) cos A 3 1 0 = ( 2 1 2 ) 3 2 3 = 0 c - a \cos B = (2a - b) \cos A \Rightarrow \sqrt{3} - 1 \cdot 0 = (2 \cdot 1 - 2) \frac{\sqrt{3}}{2} \Rightarrow \sqrt{3} = 0


@Alak Bhattacharya 's algebra is correct because b ( c 2 a 2 + b 2 ) = ( 2 a b ) ( b 2 + c 2 a 2 ) 2 ( a b ) ( a 2 b 2 c 2 ) = 0 b(c^2 - a^2 + b^2) = (2a - b)(b^2 + c^2 - a^2) \Rightarrow 2(a - b)(a^2 - b^2 - c^2) = 0 . Therefore, either a = b a = b (isosceles) or a 2 = b 2 + c 2 a^2 = b^2 + c^2 (right triangle).

David Vreken - 1 year, 3 months ago

By sine rule , we have a sin A = b sin B = c sin C = k \dfrac a{\sin A} = \dfrac b{\sin B} = \dfrac c{\sin C} = k , a = k sin A \implies a = k\sin A , b = k sin B b = k \sin B , and c = k sin C c = k \sin C . Then,

c a cos B = ( 2 a b ) cos A k sin C k sin A cos B = 2 k sin A cos A k sin B cos A Divide both sides by k sin ( 18 0 A B ) sin A cos B = 2 sin A cos A sin B cos A Note that sin ( 18 0 θ ) = sin θ sin ( A + B ) sin A cos B = 2 sin A cos A sin B cos A sin A cos B + sin B cos A sin A cos B = 2 sin A cos A sin B cos A 2 sin B cos A = 2 sin A cos A cos A ( sin B sin A ) = 0 \begin{aligned} c - a\cos B & = (2a - b) \cos A \\ k\sin C - k \sin A \cos B & = 2k\sin A \cos A - k \sin B \cos A & \small \blue{\text{Divide both sides by }k} \\ \sin (180^\circ - A-B) - \sin A \cos B & = 2\sin A \cos A - \sin B \cos A & \small \blue{\text{Note that }\sin (180^\circ - \theta) = \sin \theta} \\ \sin (A+B) - \sin A \cos B & = 2\sin A \cos A - \sin B \cos A \\ \sin A\cos B + \sin B \cos A - \sin A \cos B & = 2\sin A \cos A - \sin B \cos A \\ 2 \sin B \cos A & = 2\sin A \cos A \\ \cos A (\sin B - \sin A) & = 0 \end{aligned}

{ cos A = 0 A = 9 0 sin A sin B A = B \implies \begin{cases} \cos A = 0 & \implies A = 90^\circ \\ \sin A - \sin B & \implies A = B \end{cases} . Therefore A B C \triangle ABC can be either an isosceles triangle or right triangle .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...