Find the smallest 10-digit number that is a perfect square and contains all the digits 0 to 9.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
shouldn't you employ the information "and it contains all the digits from 0 to 9" in your code? :)
It does, the line:
len(set(str(n * n))) == 10
is only true if all digits are present.
list = Select [ Table [ FromDigits [ p ] , { p , Permutations [ Range [ 0 , 9 ] ] } ] , $#$1 ≥ 1 0 0 0 0 0 0 0 0 0 & ] ; m = Table [ v , { v , list } ] ; Table [ i 2 , { i , Select [ m , IntegerQ [ $#$1 ] & ] } ] 1 0 2 6 7 5 3 8 4 9 , 1 0 4 2 3 8 5 7 9 6 , 1 0 9 8 5 2 4 7 3 6 , 1 2 3 7 0 6 9 5 8 4 , 1 2 4 8 7 0 3 5 6 9 , 1 2 7 8 5 6 3 0 4 9 , 1 2 8 5 4 3 7 6 0 9 , 1 3 8 2 0 5 4 9 7 6 , 1 4 3 6 7 8 9 0 2 5 , 1 5 0 3 2 6 7 9 8 4 , 1 5 3 2 4 8 7 6 0 9 , 1 5 4 7 3 2 0 8 9 6 , 1 6 4 3 8 9 7 0 2 5 , 1 8 2 7 0 4 9 5 3 6 , 1 9 2 7 3 8 5 6 0 4 , 1 9 3 7 4 0 8 2 5 6 , 2 0 7 6 3 5 1 4 8 9 , 2 0 8 1 5 4 9 3 7 6 , 2 1 7 0 3 4 8 5 6 9 , 2 3 8 6 5 1 7 9 0 4 , 2 4 3 1 8 7 0 5 9 6 , 2 4 3 5 7 1 8 6 0 9 , 2 5 7 1 0 9 8 4 3 6 , 2 9 1 3 4 0 8 5 7 6 , 3 0 1 5 9 8 6 7 2 4 , 3 0 7 4 2 5 8 9 1 6 , 3 0 8 2 9 1 4 5 7 6 , 3 0 8 9 2 4 7 5 6 1 , 3 0 9 4 2 5 1 8 7 6 , 3 1 9 5 8 6 7 0 2 4 , 3 2 8 5 6 9 7 0 4 1 , 3 4 1 2 0 7 8 5 6 9 , 3 4 1 6 9 8 7 0 2 5 , 3 4 2 8 5 7 0 9 1 6 , 3 5 2 8 7 1 6 4 0 9 , 3 7 1 9 0 4 8 2 5 6 , 3 7 9 1 4 8 0 6 2 5 , 3 8 2 7 4 0 1 9 5 6 , 3 9 2 8 6 5 7 0 4 1 , 3 9 6 4 0 8 7 5 2 1 , 3 9 7 5 4 2 8 6 0 1 , 3 9 8 5 2 7 0 6 4 1 , 4 3 0 7 8 2 1 9 5 6 , 4 3 0 8 2 1 5 7 6 9 , 4 3 6 9 8 7 1 0 2 5 , 4 3 9 2 5 0 8 1 7 6 , 4 5 8 0 1 7 6 3 2 9 , 4 7 2 8 3 5 0 1 6 9 , 4 7 3 0 8 2 5 9 6 1 , 4 8 3 2 0 5 7 1 6 9 , 5 1 0 2 6 7 3 4 8 9 , 5 2 7 3 8 0 9 6 4 1 , 5 7 3 9 4 2 6 0 8 1 , 5 7 8 3 1 4 6 2 0 9 , 5 8 0 3 6 9 7 1 2 4 , 5 9 8 2 4 0 3 7 1 6 , 6 0 9 5 2 3 7 1 8 4 , 6 1 5 4 8 7 3 2 0 9 , 6 4 5 7 8 9 0 3 2 1 , 6 4 7 1 3 9 8 0 2 5 , 6 5 9 7 0 1 3 2 8 4 , 6 7 1 4 9 8 3 0 2 5 , 7 0 4 2 3 9 8 5 6 1 , 7 1 6 5 2 8 3 9 0 4 , 7 2 8 5 1 3 4 6 0 9 , 7 3 5 1 8 6 2 0 4 9 , 7 3 6 2 1 5 4 8 0 9 , 7 4 0 8 5 6 1 3 2 9 , 7 6 8 0 5 9 4 3 2 1 , 7 8 5 4 0 3 6 1 2 9 , 7 9 3 5 0 6 8 2 4 1 , 7 9 4 6 8 3 1 0 2 5 , 7 9 8 4 3 1 6 0 2 5 , 8 0 1 4 3 6 7 5 2 9 , 8 1 2 5 9 4 0 7 3 6 , 8 1 2 7 5 6 3 4 0 9 , 8 1 3 5 6 7 9 2 0 4 , 8 3 2 6 1 9 7 5 0 4 , 8 3 9 1 4 7 6 0 2 5 , 8 5 0 3 4 2 1 7 9 6 , 8 9 6 7 1 4 3 0 2 5 , 9 0 5 4 2 8 3 7 1 6 , 9 3 5 1 2 7 6 8 0 4 , 9 5 6 0 7 3 2 8 4 1 , 9 6 1 4 7 8 3 0 2 5 , 9 7 6 1 8 3 5 2 0 4 , 9 8 1 4 0 7 2 3 5 6
SQL
Create a table t with a column f containing the integers 0 to 9 and execute the following query
select min (t1.f + 10 * t2.f + 10^2 * t3.f + 10^3 * t4.f + 10^4 * t5.f + 10^5 * t6.f + 10^6 * t7.f + 10^7 * t8.f + 10^8 * t9.f + 10^9 * t10.f)
from t t1, t t2, t t3, t t4, t t5, t t6, t t7, t t8, t t9, t t10
where t1.f not in (t2.f, t3.f, t4.f, t5.f, t6.f, t7.f, t8.f, t9.f, t10.f)
and t2.f not in (t3.f, t4.f, t5.f, t6.f, t7.f, t8.f, t9.f, t10.f)
and t3.f not in (t4.f, t5.f, t6.f, t7.f, t8.f, t9.f, t10.f)
and t4.f not in (t5.f, t6.f, t7.f, t8.f, t9.f, t10.f)
and t5.f not in (t6.f, t7.f, t8.f, t9.f, t10.f)
and t6.f not in (t7.f, t8.f, t9.f, t10.f)
and t7.f not in (t8.f, t9.f, t10.f)
and t8.f not in (t9.f, t10.f)
and t9.f not in (t10.f)
and sqrt (t1.f + 10 * t2.f + 10^2 * t3.f + 10^3 * t4.f + 10^4 * t5.f + 10^5 * t6.f + 10^6 * t7.f + 10^7 * t8.f + 10^8 * t9.f + 10^9 * t10.f)
= round (sqrt (t1.f + 10 * t2.f + 10^2 * t3.f + 10^3 * t4.f + 10^4 * t5.f + 10^5 * t6.f + 10^6 * t7.f + 10^7 * t8.f + 10^8 * t9.f + 10^9 * t10.f) )
Problem Loading...
Note Loading...
Set Loading...
With a program, this problem is solved easily.