Find the sum!

Algebra Level 1

1 + 2 + 3 + 4 + . . . + 198 + 199 + 200 = ? \Large 1+2+3+4+...+198+199+200=?

3646 5764 2001 20100 2100

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Mohammad Khaza
Jul 23, 2017

the rule for consecutive integers is= n ( n + 1 ) 2 \frac{n (n+1)}{2}

so, the summation is = 200 × 201 2 \frac{200 \times 201}{2} = 20100 20100

Galen Buhain
Mar 25, 2017

=200(200+1)/2

=40200/2

=20100

Relevant wiki: Arithmetic Progression Sum

It is an Arithmetic Progression with a common difference of 1 1 . The desired sum is

s = n 2 ( a 1 + a n ) = 200 2 ( 1 + 200 ) = 20100 \color{#69047E}\huge{s=\dfrac{n}{2}(a_1+a_n)}\color{#3D99F6}=\dfrac{200}{2}(1+200)\color{#D61F06}=\boxed{20100}

Nikhil Raj
Jun 7, 2017

S = n 2 ( a + l ) = 200 2 ( 200 + 1 ) = 100 × 201 = 20100 \huge \color{#20A900}S \color{#D61F06}= \color{#3D99F6}\dfrac{n}{2} \color{#333333}\cdot \color{#BA33D6}(a + l) \color{#EC7300} \color{#E81990}= \color{#D61F06}\dfrac{200}{2} \color{#D61F06}\cdot \color{#BA33D6}(200 + 1) \color{#E81990}= \color{#69047E}100 \color{#D61F06}\times \color{#3D99F6}201 \color{#624F41}= \color{#D61F06}{\boxed{\color{#20A900}{20100}}}

Manish Kumar
Oct 25, 2015

sum of this series
n(n+1)/2
in this case n is 200, so sum S will be
S = 200(200+1)/2
S = 20100



Anurag Jha
Oct 24, 2015

(A+l)/2 * n

Achille 'Gilles'
Oct 21, 2015

Pushpesh Kumar
Oct 18, 2015

There is a simple formula for finding the sum of first n natural numbers.

n × ( n + 1 ) 2 \frac{n\times(n+1)}{2}

Thus, using this formula for n = 200, we get the answer 20100

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...