Find the sum

Algebra Level 4

7 , 77 , 777 , 7777 , 77777 , \large 7, 77, 777, 7777, 77777,\ldots What is the sum of the first 13 terms of the above sequence?


The answer is 8641975308631.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 9, 2016

Let , S n = 7 + 77 + 777 + 7777 + . . . . (n terms) S n = 7 ( 1 + 11 + 111 + 1111 + . . . . n terms ) S n = 7 9 ( 9 + 99 + 999 + 9999 + . . . . n terms ) S n = 7 9 [ ( 10 1 ) + ( 100 1 ) + ( 1000 1 ) + ( 10000 1 ) + . . . . n terms ] S n = 7 9 [ ( 10 + 1 0 2 + 1 0 3 + n terms ) ( 1 + 1 + 1 + n terms ) ] S n = 7 9 ( 10 ( 1 0 n 1 ) 10 1 n ) S n = 7 81 [ 10 ( 1 0 n 1 ) 9 n ] Put n = 13 S 13 = 7 81 ( 10 ( 1 0 13 1 ) 9 13 ) = 8641975308631 \text {Let , } S_n=7+77+777+7777+....\text {(n terms)} \\ \implies S_n=7(1+11+111+1111+....\text {n terms}) \\ \implies S_n=\dfrac79(9+99+999+9999+....\text {n terms}) \\ \implies S_n=\dfrac79[(10-1)+(100-1)+(1000-1)+(10000-1)+....\text {n terms}] \\ \implies S_n=\dfrac79[(10+10^2+10^3+\cdots\text{n terms})-(1+1+1+\cdots\text{n terms})] \\ S_n=\dfrac79\left(\dfrac{10(10^n-1)}{10-1}-n\right)\\ S_n=\dfrac{7}{81}[10(10^n-1)-9n] \\ \text{Put n}=13 \\ S_{13}=\dfrac{7}{81}\left(10(10^{13}-1)-9\cdot13\right) = \boxed{8641975308631}


: Generalized for a Digit (N) : Let , S n = N + N N + N N N + N N N N + . . . . (n terms) S n = N ( 1 + 11 + 111 + 1111 + . . . . n terms ) S n = N 9 ( 9 + 99 + 999 + 9999 + . . . . n terms ) S n = N 9 [ ( 10 1 ) + ( 100 1 ) + ( 1000 1 ) + ( 10000 1 ) + . . . . n terms ] S n = N 9 [ ( 10 + 1 0 2 + 1 0 3 + n terms ) ( 1 + 1 + 1 + n terms ) ] S n = N 9 ( 10 ( 1 0 n 1 ) 10 1 n ) S n = N 81 [ 10 ( 1 0 n 1 ) 9 n ] \text{: Generalized for a Digit (N) :} \\ \text {Let , } S_n=N+NN+NNN+NNNN+....\text {(n terms)} \\ \implies S_n=N(1+11+111+1111+....\text {n terms}) \\ \implies S_n=\dfrac{N}{9}(9+99+999+9999+....\text {n terms}) \\ \implies S_n=\dfrac{N}{9}[(10-1)+(100-1)+(1000-1)+(10000-1)+....\text {n terms}] \\ \implies S_n=\dfrac{N}{9}[(10+10^2+10^3+\cdots\text{n terms})-(1+1+1+\cdots\text{n terms})] \\ S_n=\dfrac{N}{9}\left(\dfrac{10(10^n-1)}{10-1}-n\right)\\ S_n=\dfrac{N}{81}[10(10^n-1)-9n] \\

Nice solution!.

Log in to reply

Thanks :) !

Sabhrant Sachan - 5 years ago

Yes ! That's it . Mine is also like you .

Adnan Roshid - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...