Find The Sum

Algebra Level 4

If 1 3 2 2 1 ! + 2 3 3 2 2 ! + 3 3 4 2 3 ! + + 10 0 3 10 1 2 100 ! = 1 a b \dfrac{1^3 - 2^2}{1!} + \dfrac{2^3 - 3^2}{2!} + \dfrac{3^3 - 4^2}{3!} + \cdots + \dfrac{100^3 - 101^2}{100!} = 1 - \dfrac{a}{b} for some coprime positive integers a , b , a, b, find the last three digits of a . a.


The answer is 201.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

n 3 ( n + 1 ) 2 n ! = n 3 n ! ( n + 1 ) 2 n ! = n 2 ( n 1 ) ! ( n + 1 ) 2 n ! \frac{n^3-(n+1)^2}{n!} = \frac{n^3}{n!} - \frac{(n+1)^2}{n!} = \frac{n^2}{(n-1)!} -\frac{(n+1)^2}{n!}

1 3 2 2 1 ! + 2 3 3 2 2 ! + 3 3 4 2 3 ! + . . . . . . . . + 10 0 3 10 1 2 100 ! \frac{1^3-2^2}{1!} + \frac{2^3-3^2}{2!} + \frac{3^3-4^2}{3!} + ........+\frac{100^3-101^2}{100!}

= ( 1 3 1 ! 2 2 1 ! ) + ( 2 2 1 ! 3 2 2 ! ) + ( 3 2 2 ! 4 2 3 ! ) + . . . . . . . . . . + ( 10 0 2 99 ! 10 1 2 100 ! ) = (\frac{1^3}{1!} -\frac{2^2}{1!}) + (\frac{2^2}{1!} -\frac{3^2}{2!}) + (\frac{3^2}{2!} -\frac{4^2}{3!}) + .......... + (\frac{100^2}{99!} -\frac{101^2}{100!})

= 1 10 1 2 100 ! = 1-\frac{101^2}{100!}

a b = 10 1 2 100 ! \longrightarrow \frac{a}{b} = \frac{101^2}{100!}

a = 10 1 2 = 10201 a = 101^2 = 10201 . Last three digits 201 \boxed{201}

One may transform n 3 ( n + 1 ) 2 n ! \dfrac{n^3 - (n+1)^2}{n!} to n 3 n ! ( n + 1 ) 2 n ! = n 3 n ! ( n + 1 ) 3 ( n + 1 ) ! = f ( n ) f ( n + 1 ) \dfrac{n^3}{n!} - \dfrac{(n+1)^2}{n!} = \dfrac{n^3}{n!} - \dfrac{(n+1)^3}{(n+1)!} = f(n) - f(n+1) where f ( n ) = n 3 n ! f(n) = \dfrac{n^3}{n!} . This turns a telescopic which ultimately gives f ( 1 ) f ( 101 ) f(1) - f(101) . Though the above solution is quite similar as this.

Sagnik Saha - 7 years, 1 month ago

Log in to reply

I did it your way.

Anish Puthuraya - 7 years, 1 month ago

same here

Anirudha Nayak - 7 years, 1 month ago

oh ..it was so easy....

Max B - 7 years, 1 month ago

Precisely my intended solution. Good job!

Sreejato Bhattacharya - 7 years, 1 month ago

wow i also followed the same method bu kept in the x form

Anish Kelkar - 7 years ago

Done the same way !

Dinesh Chavan - 7 years, 1 month ago

Log in to reply

Here's a good challenge. Create a telescoping series where the answer is NOT the first term minus the last (assuming all terms are in order)

Trevor Arashiro - 6 years, 8 months ago

done d same way!

Pradeep Ch - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...