Find the sum of a+b+c+d

Algebra Level 2

find the answer for the above condition


The answer is 105.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Danton Libunao
Mar 7, 2014

27x^3 - 512y^3 = (3x - ay) (bx^2 + cxy +dy^2 factor 27x^3 -512y^3 then we get, (3x - 8y) (9x^2 + 24xy + 64y^2) = (3x - ay) (bx^2 +cxy + dy^2) from the equation above we simply get the value of a, b, c & d. so; a + b + c + d = 8 + 9 + 24 + 64 = 105

Sarthak Tanwani
Mar 26, 2014

it resembles the identity, <marquee> a^3 - b^3 = ( a - b ) ( a^2 + b^2 + ab ) <marquee/> <marquee> So we can directly put the values and get, <marquee/> <marquee> 27x^3 - 512y^3 = (3x)^3 - (8y)^3 = ( 3x - 8y )[ (3x)^2 + (8y)^2 + (3x)(8y)] = ( 3x - 8y )(9x^2 + 64y^2 + 24xy) <marquee/> <marquee> So,a=8, b=9, c=24, d=64 <marquee/> <marquee> a+b+c+d = 8+9+24+64 = 105 <marquee/>

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...