Find the sum of the first ten terms

Algebra Level pending

An arithmetic progression is composed of n n terms. The fifth term is 8.5 -8.5 and the last term is 71 -71 . Find the sum of the first ten terms.

112.5 85 n n 5 \dfrac{112.5-85n}{n-5} 250 n 8.5 \dfrac{250}{n}-8.5 n 2 ( 3. 5 n ) \dfrac{n}{2}(-3.5^n) 87.5 n + 3 -87.5n+3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Given: a 5 = 8.5 a_5=-8.5 and a n = 71 a_n=-71

a n = a m + ( n m ) d a_n=a_m+(n-m)d

71 = 8.5 + ( n 5 ) d -71=-8.5+(n-5)d

71 = 8.5 + d n 5 d -71=-8.5+dn-5d

62.5 = d n 5 d -62.5=dn-5d

d = 62.5 n 5 d=\dfrac{-62.5}{n-5}

Compute a 1 a_1 :

a 5 = a 1 + 4 d a_5=a_1+4d

8.5 = a 1 + 4 ( 62.5 n 5 ) -8.5=a_1+4\left(\dfrac{-62.5}{n-5}\right)

a 1 = 250 n 5 8.5 a_1=\dfrac{250}{n-5}-8.5

Compute a 10 a_{10} :

a 10 = a 1 + 9 d = 250 n 5 8.5 + 9 ( 62.5 n 5 ) = 250 n 5 8.5 562.5 n 5 = 270 8.5 n 5 a_{10}=a_1+9d=\dfrac{250}{n-5}-8.5+9\left(\dfrac{-62.5}{n-5}\right)=\dfrac{250}{n-5}-8.5-\dfrac{562.5}{n-5}=\dfrac{-270-8.5}{n-5}

Compute the sum of the first ten terms:

s 10 = 10 2 ( a 1 + a 10 ) = 5 ( 250 n 5 8.5 + 270 8.5 n 5 ) = 5 ( 250 8.5 n + 42.5 270 8.5 n n 5 ) = 5 ( 22.5 17 n n 5 ) = s_{10}=\dfrac{10}{2}(a_1+a_{10})=5\left(\dfrac{250}{n-5}-8.5+\dfrac{-270-8.5}{n-5}\right)=5\left(\dfrac{250-8.5n+42.5-270-8.5n}{n-5}\right)=5\left(\dfrac{22.5-17n}{n-5}\right)= 112.5 85 n n 5 \boxed{\dfrac{112.5-85n}{n-5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...