Find the sum of the following expression...

Calculus Level 5

1 2 ! 1 ! 1 4 ! 3 ! + 1 6 ! 5 ! 1 8 ! 7 ! + \large \frac 1{2!-1!} - \frac 1{4!-3!} + \frac 1{6!-5!} - \frac 1{8!-7!} + \cdots

Find the sum of the above expression till infinity.


The answer is 0.95.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 18, 2017

S = 1 2 ! 1 ! 1 4 ! 3 ! + 1 6 ! 5 ! 1 8 ! 7 ! + = 1 1 ! ( 2 1 ) 1 3 ! ( 4 1 ) + 1 5 ! ( 6 1 ) 1 7 ! ( 8 1 ) + = 1 1 1 ! 1 3 3 ! + 1 5 5 ! 1 7 7 ! + \begin{aligned} S & = \frac 1{2!-1!} - \frac 1{4!-3!} + \frac 1{6!-5!} - \frac 1{8!-7!} + \cdots \\ & = \frac 1{1!(2-1)} - \frac 1{3!(4-1)} + \frac 1{5!(6-1)} - \frac 1{7!(8-1)} + \cdots \\ & = \frac 1{1\cdot 1!} - \frac 1{3 \cdot 3!} + \frac 1{5\cdot 5!} - \frac 1{7\cdot 7!} + \cdots \end{aligned}

Introducing x n x^n , where n n is non-negative integers, as follows:

S ( x ) = x 1 1 ! x 3 3 3 ! + x 5 5 5 ! x 7 7 7 ! + = ( 1 1 ! x 2 3 ! + x 4 5 ! x 6 7 ! + ) d x = sin x x d x \begin{aligned} S(x) & = \frac x{1\cdot 1!} - \frac {x^3}{3 \cdot 3!} + \frac {x^5}{5\cdot 5!} - \frac {x^7}{7\cdot 7!} + \cdots \\ & = \int \left( \frac 1{1!} - \frac {x^2}{3!} + \frac {x^4}{5!} - \frac {x^6}{7!} + \cdots \right) dx \\ & = \int \frac {\sin x}x dx \end{aligned}

S = 0 1 sin x x d x = Si ( 1 ) 0.946 \displaystyle \implies S = \int_0^1 \frac {\sin x}x dx = \operatorname{Si} (1) \approx \boxed{0.946} , where Si ( ) \operatorname{Si}(\cdot) denotes the sine integral.

How do i evaluate that Si ( 1 ) \operatorname{Si}(1) without calculator, i did it with calculator!

Md Zuhair - 4 years, 1 month ago

Log in to reply

Estimate from 1 1 1 ! 1 3 3 ! + 1 5 5 ! 1 7 7 ! + \dfrac 1{1\cdot 1!} - \dfrac 1{3 \cdot 3!} + \dfrac 1{5\cdot 5!} - \dfrac 1{7\cdot 7!} + \cdots . It converges very fast.

1, 0.944444444, 0.946111111, 0.946082766, 0.946083073, 0.94608307, 0.94608307, ...

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

I also did the same sir :D

Naren Bhandari - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...