Find the sum of the roots of
( x − 5 ) ( x − 7 ) ( x + 6 ) ( x + 4 ) = 5 0 4
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The simplified equation by multiplying the terms is x 4 − 2 x 3 − 6 1 x 2 + 6 2 x + 3 3 6 = 0
By Vietas formula , sum of roots is negative of coefficient of x 3 , which is − ( − 2 ) = 2
Rearranged and multiply.
( x − 5 ) ( x + 4 ) ( x − 7 ) ( x + 6 ) = 5 0 4
( x 2 − x − 2 0 ) ( x 2 − x − 4 2 ) = 5 0 4
let a = x 2 − x , then
( a − 2 0 ) ( a − 4 2 ) = 5 0 4
a 2 − 6 2 a + 3 3 6 = 0
By using the quadratic formula, we get a = 5 6 and a = 6
when a = 5 6 ,
5 6 = x 2 − x ⟹ x 2 − x − 5 6 = 0 ⟹ x = 8 , x = − 7
when a = 6
6 = x 2 − x ⟹ x 2 − x − 6 = 0 ⟹ x = 3 , x = − 2
The sum of the roots is 8 − 7 + 3 − 2 = 2 .
Problem Loading...
Note Loading...
Set Loading...
( x − 5 ) ( x + 4 ) ( x − 7 ) ( x + 6 ) = 5 0 4 . S o ( x − 5 ) ( x + 4 ) ( x − 7 ) ( x + 6 ) − 5 0 4 = 0 . S o x 4 + ( − 7 − 5 + 4 + 6 ) x 3 + . . . . . . . . . . . . = 0 . − 7 − 5 + 4 + 6 = − 2 . B y V i e t a ′ s f o r m u l a , s u m o f r o o t s i s n e g a t i v e o f c o e f f i c i e n t o f , x 3 t e r m = − ( − 2 ) = 2 .