Find the sum of this seemingly random sequence!

Calculus Level 3

1.5 5 + 1.5 20 + 1 30 + 1.5 80 + 1.5 125 + 1 120 + = ? \frac {1.5}5 + \frac {1.5}{20} + \frac 1{30} + \frac {1.5}{80} + \frac {1.5}{125} + \frac 1{120} + \cdots =\ ?


The answer is 0.49348022005.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 21, 2018

Relevant wiki: Riemann Zeta Function

S = 1.5 5 + 1.5 20 + 1 30 + 1.5 80 + 1.5 125 + 1 120 + = 3 10 + 3 40 + 3 90 + 3 160 + 3 250 + 3 360 + = 3 10 k = 1 1 k 2 = 3 10 ζ ( 2 ) where ζ ( ) denotes the Riemann zeta function. = 3 10 × π 2 6 = π 2 20 0.493 \begin{aligned} S & = \frac {1.5}5 + \frac {1.5}{20} + \frac 1{30} + \frac {1.5}{80} + \frac {1.5}{125} + \frac 1{120} + \cdots \\ & = \frac 3{10} + \frac 3{40} + \frac 3{90} + \frac 3{160} + \frac 3{250} + \frac 3{360} + \cdots \\ & = \frac 3{10}\sum_{k=1}^\infty \frac 1{k^2} \\ & = \frac 3{10}\color{#3D99F6} \zeta (2) & \small \color{#3D99F6} \text{where }\zeta (\cdot) \text{ denotes the Riemann zeta function.} \\ & = \frac 3{10}\times \color{#3D99F6} \frac {\pi^2}6 \\ & = \frac {\pi^2}{20} \approx \boxed{0.493} \end{aligned}

Torus Wheel
Jun 19, 2018

Sum of the sequence = 1.5/5 + 1.5/20 + 1/30 + 1.5/80 + 1.5/125 + 1/120 + ..........

                                    =   3/10 + 3/40 + 3/90 + 3/160 + 3/250 + 3/360 .........

                                    =   3/10 * (1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ..........  )

                                    =   3/10*(pi^2 / 6)

, which is approximately equal to 0.49348022005

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...