Sum of Roots

Algebra Level 3

log 2 x log 4 log 6 x = log 2 x log 4 x + log 4 x log 6 x + log 6 x log 2 x \log_2 x \log_4 \log_6 x = \log_2 x \log_4 x + \log_4 x \log_6 x + \log_6 x \log_2 x

Find the sum of real x x satisfying the equation above..


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The given equation reduces to the form :

( ln x ) 3 = ( ln x ) 2 ( ln 2 + ln 4 + ln 6 ) (\ln x) ^3=(\ln x) ^2(\ln 2+\ln 4+\ln 6)

( ln x ) 2 ( ln x ln 48 ) = 0 \implies (\ln x) ^2(\ln x -\ln 48)=0

x 1 = 1 , x 2 = 48 , x 1 + x 2 = 49 \implies x_1=1,x_2=48,x_1+x_2=\boxed {49} .

Chew-Seong Cheong
Jul 26, 2020

log 2 x log 4 log 6 x = log 2 x log 4 x + log 4 x log 6 x + log 6 x log 2 x log 3 x log 2 log 4 log 6 = log 2 x log 2 log 4 + log 2 x log 4 log 6 + log 2 x log 6 log 2 log 3 x log 2 log 4 log 6 = log 2 x ( log 2 + log 4 + log 6 ) log 2 log 4 log 6 log 3 x = log 2 x log 48 \begin{aligned} \log_2 x \log_4 \log_6 x & = \log_2 x \log_4 x + \log_4 x \log_6 x + \log_6 x \log_2 x \\ \frac {\log^3 x}{\log 2 \log 4 \log 6} & = \frac {\log^2 x}{\log 2 \log 4} + \frac {\log^2 x}{\log 4 \log 6} + \frac {\log^2 x}{\log 6 \log 2} \\ \frac {\log^3 x}{\log 2 \log 4 \log 6} & = \frac {\log^2 x (\log 2 + \log 4 + \log 6)}{\log 2 \log 4 \log 6} \\ \log^3 x & = \log^2 x \log 48 \end{aligned}

log 2 x ( log x log 24 ) = 0 { log x = 0 x = 1 log x log 48 = 0 x = 48 \implies \log^2 x (\log x - \log 24) = 0 \implies \begin{cases} \log x = 0 & \implies x = 1 \\ \log x - \log 48 = 0 & \implies x = 48 \end{cases} .

Therefore the sum of roots is 1 + 48 = 49 1+48 = \boxed {49} .

@Aly Ahmed , It is not \log 2^x log z x \log_z^x but \log 2 x log 2 x \log_2 x . I think this is the second time that I see this.

Chew-Seong Cheong - 10 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...