x and y are real numbers that satisfy the following equations:
x 2 − 4 y = − 7 and
y 2 − 2 x = 2 .What is the value of x + y ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Adding two equations,
( x 2 − 4 y ) + ( y 2 − 2 x ) = − 7 + 2
x 2 − 2 x + y 2 − 4 y = − 5
Completing the squares,
( x − 1 ) 2 + ( y − 2 ) 2 = 0 ⟹ x = 1 , y = 2
Thus, x + y = 3
If you add the two equations, you find that x 2 − 2 x + y 2 − 4 y = − 5 . If you complete the square, you find that x 2 − 2 x + 1 + y 2 − 4 y + 4 = ( x − 1 ) 2 + ( y − 2 ) 2 = 0 . This is only satisfied when ( x − 1 ) 2 = ( y − 2 ) 2 = 0 , so x = 1 and y = 2 . x + y = 3
Problem Loading...
Note Loading...
Set Loading...
Given equations are, x 2 − 4 y = − 7 ....(i) and y 2 − 2 x = 2 ....(ii)
Adding (i) and (ii), we get---
x 2 − 4 y + y 2 − 2 x = − 5
⟹ x 2 − 4 y + y 2 − 2 x + 5 = 0
⟹ ( x 2 − 2 x + 1 ) + ( y 2 − 4 y + 4 ) = 0
⟹ ( x − 1 ) 2 + ( y − 2 ) 2 = 0
Now, since square of any real no. cannot be (-ve), so we can see that the above equation is satisfied only if ( x − 1 ) 2 and ( y − 2 ) 2 are 0, i.e, ( x − 1 ) and ( y − 2 ) . are 0.
Thus, x − 1 = y − 2 = 0 ⟹ x = 1 , y = 2 ⟹ x + y = 1 + 2 = 3