Find the sum.

Level pending

x x and y y are real numbers that satisfy the following equations:

x 2 4 y = 7 x^2-4y=-7 and

y 2 2 x = 2 y^2-2x=2 .What is the value of x + y x+y ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Prasun Biswas
Jan 14, 2014

Given equations are, x 2 4 y = 7 x^{2}-4y=-7 ....(i) and y 2 2 x = 2 y^{2}-2x=2 ....(ii)

Adding (i) and (ii), we get---

x 2 4 y + y 2 2 x = 5 x^{2}-4y+y^{2}-2x=-5

x 2 4 y + y 2 2 x + 5 = 0 \implies x^{2}-4y+y^{2}-2x+5=0

( x 2 2 x + 1 ) + ( y 2 4 y + 4 ) = 0 \implies (x^{2}-2x+1)+(y^{2}-4y+4)=0

( x 1 ) 2 + ( y 2 ) 2 = 0 \implies (x-1)^{2}+(y-2)^{2}=0

Now, since square of any real no. cannot be (-ve), so we can see that the above equation is satisfied only if ( x 1 ) 2 (x-1)^{2} and ( y 2 ) 2 (y-2)^{2} are 0, i.e, ( x 1 ) (x-1) and ( y 2 ) (y-2) . are 0.

Thus, x 1 = y 2 = 0 x = 1 , y = 2 x + y = 1 + 2 = 3 x-1=y-2=0 \implies x=1 , y=2 \implies x+y=1+2=\boxed{3}

Adding two equations,

( x 2 4 y ) + ( y 2 2 x ) = 7 + 2 (x^{2}-4y)+(y^{2}-2x)=-7+2

x 2 2 x + y 2 4 y = 5 x^{2}-2x+y^{2}-4y=-5

Completing the squares,

( x 1 ) 2 + ( y 2 ) 2 = 0 x = 1 , y = 2 (x-1)^{2}+(y-2)^{2}=0\implies x=1, y=2

Thus, x + y = 3 \boxed {x+y=3}

Trevor B.
Jan 10, 2014

If you add the two equations, you find that x 2 2 x + y 2 4 y = 5. x^2-2x+y^2-4y=-5. If you complete the square, you find that x 2 2 x + 1 + y 2 4 y + 4 = ( x 1 ) 2 + ( y 2 ) 2 = 0. x^2-2x+1+y^2-4y+4=(x-1)^2+(y-2)^2=0. This is only satisfied when ( x 1 ) 2 = ( y 2 ) 2 = 0 , (x-1)^2=(y-2)^2=0\text{,} so x = 1 x=1 and y = 2. y=2. x + y = 3 x+y=\boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...