Find the surface area

Geometry Level pending

Shown above is a regular pyramid, the lower base is a 2 × 4 2 \times 4 rectangle and the upper base is a square with side length of 1 1 . If the height is 5 5 , find the surface area of the pyramid correct to three decimal places.


The answer is 49.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider my diagram.

a = 4 1 2 = 3 2 a=\dfrac{4-1}{2}=\dfrac{3}{2}

b = 5 2 + ( 3 2 ) 2 = 1 2 109 b=\sqrt{5^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{1}{2}\sqrt{109}

c = 2 1 2 = 1 2 c=\dfrac{2-1}{2}=\dfrac{1}{2}

d = 5 2 + ( 1 2 ) 2 = 1 2 101 d=\sqrt{5^2+\left(\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\sqrt{101}

surface area = area of upper base + area of lower base + area of four trapezoids \text{surface area = area of upper base + area of lower base + area of four trapezoids}

surface area = 1 2 + 2 ( 4 ) + 2 ( 1 2 ) ( 1 + 2 ) ( 1 2 109 ) + 2 ( 1 2 ) ( 1 + 4 ) ( 1 2 101 ) 49.785 \text{surface area}=1^2 + 2(4)+2\left(\dfrac{1}{2}\right)(1+2)\left(\dfrac{1}{2}\sqrt{109}\right)+2\left(\dfrac{1}{2}\right)(1+4)\left(\dfrac{1}{2}\sqrt{101}\right) \approx \boxed{ 49.785}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...