Find the conic tangent faster!

Calculus Level 4

Suppose the equation A x 2 + B x y + C y 2 + D x + E y + F = 0 Ax^2+Bxy+Cy^2+Dx+Ey+F=0 represents a curve of a conic. Let ( x 0 , y 0 ) (x_0, y_0) be a point lies on the conic. Find the equation of the tangent at ( x 0 , y 0 ) (x_0, y_0)

Note: If you find the answer, see how it is similar to the conic equation

A ( x x 0 ) + B ( x 0 y y 0 x 2 ) + C ( y y 0 ) + D ( x x 0 2 ) + E ( y y 0 2 ) + F = 0 A(x-x_0)+B(\frac{x_0y-y_0x}{2})+C(y-y_0)+D(\frac{x-x_0}{2})+E(\frac{y-y_0}{2})+F=0 A ( x + x 0 ) + B ( x 0 y + y 0 x 2 ) + C ( y + y 0 ) + D ( x + x 0 2 ) + E ( y + y 0 2 ) + F = 0 A(x+x_0)+B(\frac{x_0y+y_0x}{2})+C(y+y_0)+D(\frac{x+x_0}{2})+E(\frac{y+y_0}{2})+F=0 A ( x 0 x ) + B ( x 0 y + y 0 x 2 ) + C ( y 0 y ) + D ( x + x 0 2 ) + E ( y + y 0 2 ) + F = 0 A(x_0x)+B(\frac{x_0y+y_0x}{2})+C(y_0y)+D(\frac{x+x_0}{2})+E(\frac{y+y_0}{2})+F=0 A ( x 0 x ) + B ( x 0 y y 0 x 2 ) + C ( y 0 y ) + D ( x x 0 2 ) + E ( y y 0 2 ) + F = 0 A(x_0x)+B(\frac{x_0y-y_0x}{2})+C(y_0y)+D(\frac{x-x_0}{2})+E(\frac{y-y_0}{2})+F=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Raymond Chan
Jul 22, 2018

d d x ( A x 2 + B x y + C y 2 + D x + E y + F ) = d d x ( 0 ) \frac{d}{dx}(Ax^2+Bxy+Cy^2+Dx+Ey+F)=\frac{d}{dx}(0) 2 A x + B ( x d y d x + y ) + 2 C y d y d x + D + E d y d x = 0 2Ax+B(x\frac{dy}{dx}+y)+2Cy\frac{dy}{dx}+D+E\frac{dy}{dx}=0 d y d x = ( 2 A x + B y + D ) B x + 2 C y + E \frac{dy}{dx}=\frac{-(2Ax+By+D)}{Bx+2Cy+E} Put ( x 0 , y 0 ) (x_0, y_0) into d y d x \frac{dy}{dx} , we get the slope of the tangent, and hence the equation of the tangent is y y 0 x x 0 = ( 2 A x 0 + B y 0 + D ) B x 0 + 2 C y 0 + E \frac{y-y_0}{x-x_0}=\frac{-(2Ax_0+By_0+D)}{Bx_0+2Cy_0+E} ( y y 0 ) ( B x 0 + 2 C y 0 + E ) = ( x x 0 ) ( 2 A x 0 + B y 0 + D ) (y-y_0)(Bx_0+2Cy_0+E)=-(x-x_0)(2Ax_0+By_0+D) B x 0 y + 2 C y 0 y + E y B x 0 y 0 2 C y 0 2 E y 0 = 2 A x 0 2 + B x 0 y 0 + D x 0 2 A x 0 x B y 0 x D x Bx_0y+2Cy_0y+Ey-Bx_0y_0-2Cy_0^2-Ey_0=2Ax_0^2+Bx_0y_0+Dx_0-2Ax_0x-By_0x-Dx 0 = 2 A x 0 2 + 2 C y 0 2 2 A x 0 x + B ( 2 x 0 y 0 x 0 y y 0 x ) 2 C y 0 y + D ( x 0 x ) + E ( y 0 y ) 0=2Ax_0^2+2Cy_0^2-2Ax_0x+B(2x_0y_0-x_0y-y_0x)-2Cy_0y+D(x_0-x)+E(y_0-y) 0 = A x 0 2 + C y 0 2 A x 0 x + B ( 2 x 0 y 0 x 0 y y 0 x 2 ) C y 0 y + D ( x 0 x 2 ) + E ( y 0 y 2 ) 0=Ax_0^2+Cy_0^2-Ax_0x+B(\frac{2x_0y_0-x_0y-y_0x}{2})-Cy_0y+D(\frac{x_0-x}{2})+E(\frac{y_0-y}{2}) Since ( x 0 , y 0 ) (x_0, y_0) lies on the conic, so A x 0 2 + B x 0 y 0 + C y 0 2 + D x 0 + E y 0 + F = 0 Ax_0^2+Bx_0y_0+Cy_0^2+Dx_0+Ey_0+F=0 , or equivalently, A x 0 2 + C y 0 2 = ( B x 0 y 0 + D x 0 + E y 0 + F ) Ax_0^2+Cy_0^2=-(Bx_0y_0+Dx_0+Ey_0+F)

Hence the tangent becomes ( B x 0 y 0 + D x 0 + E y 0 + F ) A x 0 x + B ( 2 x 0 y 0 x 0 y y 0 x 2 ) C y 0 y + D ( x 0 x 2 ) + E ( y 0 y 2 ) = 0 -(Bx_0y_0+Dx_0+Ey_0+F)-Ax_0x+B(\frac{2x_0y_0-x_0y-y_0x}{2})-Cy_0y+D(\frac{x_0-x}{2})+E(\frac{y_0-y}{2})=0 A x 0 x + B ( x 0 y y 0 x 2 ) C y 0 y + D ( x x 0 2 ) + E ( y y 0 2 ) F = 0 -Ax_0x+B(\frac{-x_0y-y_0x}{2})-Cy_0y+D(\frac{-x-x_0}{2})+E(\frac{-y-y_0}{2})-F=0 Dividing both side by 1 -1 , we finally get our equation of tangent A x 0 x + B ( x 0 y + y 0 x 2 ) + C y 0 y + D ( x + x 0 2 ) + E ( y + y 0 2 ) + F = 0 \boxed{Ax_0x+B(\frac{x_0y+y_0x}{2})+Cy_0y+D(\frac{x+x_0}{2})+E(\frac{y+y_0}{2})+F=0}

Result: If we want to find the equation of tangent of a conic at a point (on the conic), we just have to change the term x 2 x^2 , y 2 y^2 , x y xy , x x , and y y systematically.

@Raymond Chan This is an amazing property right??!! And what more, we can even generalize this in 3-D.......!!!!!

Aaghaz Mahajan - 2 years, 10 months ago

Log in to reply

Really? I haven't thought about that!

Raymond Chan - 2 years, 10 months ago

Log in to reply

Yeah!!!! I tried it myself......!! Try finding a tangent to a hyperbolic paraboloid from a general point on it........!!

Aaghaz Mahajan - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...