Suppose the equation A x 2 + B x y + C y 2 + D x + E y + F = 0 represents a curve of a conic. Let ( x 0 , y 0 ) be a point lies on the conic. Find the equation of the tangent at ( x 0 , y 0 )
Note: If you find the answer, see how it is similar to the conic equation
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Raymond Chan This is an amazing property right??!! And what more, we can even generalize this in 3-D.......!!!!!
Log in to reply
Really? I haven't thought about that!
Log in to reply
Yeah!!!! I tried it myself......!! Try finding a tangent to a hyperbolic paraboloid from a general point on it........!!
Problem Loading...
Note Loading...
Set Loading...
d x d ( A x 2 + B x y + C y 2 + D x + E y + F ) = d x d ( 0 ) 2 A x + B ( x d x d y + y ) + 2 C y d x d y + D + E d x d y = 0 d x d y = B x + 2 C y + E − ( 2 A x + B y + D ) Put ( x 0 , y 0 ) into d x d y , we get the slope of the tangent, and hence the equation of the tangent is x − x 0 y − y 0 = B x 0 + 2 C y 0 + E − ( 2 A x 0 + B y 0 + D ) ( y − y 0 ) ( B x 0 + 2 C y 0 + E ) = − ( x − x 0 ) ( 2 A x 0 + B y 0 + D ) B x 0 y + 2 C y 0 y + E y − B x 0 y 0 − 2 C y 0 2 − E y 0 = 2 A x 0 2 + B x 0 y 0 + D x 0 − 2 A x 0 x − B y 0 x − D x 0 = 2 A x 0 2 + 2 C y 0 2 − 2 A x 0 x + B ( 2 x 0 y 0 − x 0 y − y 0 x ) − 2 C y 0 y + D ( x 0 − x ) + E ( y 0 − y ) 0 = A x 0 2 + C y 0 2 − A x 0 x + B ( 2 2 x 0 y 0 − x 0 y − y 0 x ) − C y 0 y + D ( 2 x 0 − x ) + E ( 2 y 0 − y ) Since ( x 0 , y 0 ) lies on the conic, so A x 0 2 + B x 0 y 0 + C y 0 2 + D x 0 + E y 0 + F = 0 , or equivalently, A x 0 2 + C y 0 2 = − ( B x 0 y 0 + D x 0 + E y 0 + F )
Hence the tangent becomes − ( B x 0 y 0 + D x 0 + E y 0 + F ) − A x 0 x + B ( 2 2 x 0 y 0 − x 0 y − y 0 x ) − C y 0 y + D ( 2 x 0 − x ) + E ( 2 y 0 − y ) = 0 − A x 0 x + B ( 2 − x 0 y − y 0 x ) − C y 0 y + D ( 2 − x − x 0 ) + E ( 2 − y − y 0 ) − F = 0 Dividing both side by − 1 , we finally get our equation of tangent A x 0 x + B ( 2 x 0 y + y 0 x ) + C y 0 y + D ( 2 x + x 0 ) + E ( 2 y + y 0 ) + F = 0
Result: If we want to find the equation of tangent of a conic at a point (on the conic), we just have to change the term x 2 , y 2 , x y , x , and y systematically.