Find the transformation matrix

Algebra Level 2

Let T : R 2 R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R^2} be a linear transformation such that T ( 2 1 ) = ( 5 4 ) T\begin{pmatrix} 2\\1 \end{pmatrix}=\begin{pmatrix} 5\\4 \end{pmatrix} and T ( 3 0 ) = ( 1 2 ) T\begin{pmatrix} 3\\0 \end{pmatrix}=\begin{pmatrix} 1\\2 \end{pmatrix} . If a matrix A A is the standard matrix of T T , find det ( 3 A ) \det(3A) .


The answer is -18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 25, 2019

We have A ( 3 2 0 1 ) = ( 1 5 2 4 ) A\left(\begin{array}{cc} 3 & 2 \\ 0 & 1 \end{array}\right) \; = \; \left(\begin{array}{cc} 1 & 5 \\ 2 & 4 \end{array}\right) and hence A = ( 1 5 2 4 ) ( 3 2 0 1 ) 1 = 1 3 ( 1 13 2 8 ) A \; = \; \left(\begin{array}{cc} 1 & 5 \\ 2 & 4 \end{array}\right)\left(\begin{array}{cc} 3 & 2 \\ 0 & 1 \end{array}\right)^{-1} \; = \; \tfrac13\left(\begin{array}{cc} 1 & 13 \\ 2 & 8 \end{array}\right) Thus d e t ( 3 A ) = 1 13 2 8 = 18 \mathrm{det}(3A) \; = \ \left| \begin{array}{cc} 1 & 13 \\ 2 & 8 \end{array}\right| \; = \; \boxed{-18}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...