Find the two numbers

Algebra Level pending

When 4 is added to two numbers, the ratio is 5:6. When 4 is subtracted from the two numbers, the ratio is 1:2. Find the two numbers.

5, 7 12, 14 6, 8 9, 12

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pop Wong
Mar 5, 2021

There is a trick when the ratio changes is also ( 5 : 6 ) ( 5 4 : 6 4 ) (5:6) \rightarrow (5-4:6-4)

a + 4 : b + 4 = 5 : 6 + a 4 : b 4 = 1 : 2 2 a : 2 b = 6 : 8 a : b = 6 : 8 \begin{aligned} &\hspace{5mm} a+4&: &b+4 &=5&:6 \\ +&\hspace{5mm} a-4&: &b-4 &=1&:2 \\ \hline &\hspace{5mm} 2a&: &2b&=6&:8 \\ &\hspace{5mm} a&: &b&=6&:8 \end{aligned}

( a , b ) = ( 6 , 8 ) (a,b) = (6,8)


Proof:

If a , b , x , y > c a,b,x,y > c are positive integers

{ a + c : b + c = x : y a c : b c = x c : y c { A + 1 : B + 1 = x : y A 1 : B 1 = x c : y c A = a / c , B = b / c { A y + y = B x + x A y A c y + c = B x B c x + c \left\{ \begin{array}{l}a+\textcolor{#3D99F6}{c}:b+\textcolor{#3D99F6}{c} =x:y \\ a-\textcolor{#3D99F6}{c}:b-\textcolor{#3D99F6}{c} =x-\textcolor{#3D99F6}{c}:y-\textcolor{#3D99F6}{c}\end{array} \right. \\ \left\{ \begin{array}{l}A+1:B+1 =x:y \\ A-1:B-1 =x-c:y-c\end{array} \right. \hspace{10mm} \textcolor{#3D99F6}{A=a/c, B=b/c} \\ \left\{ \begin{array}{l}Ay+y =Bx+x \\ Ay-Ac-y+\cancel{c} = Bx-Bc-x+\cancel{c}\end{array} \right. \\

Sum up the two equations

A ( 2 y c ) = B ( 2 x c ) a ( 2 y c ) = b ( 2 x c ) a : b = ( 2 x c ) : ( 2 y c ) A(2y-c) = B(2x-c)\\ \implies a(2y-c) = b(2x-c)\\ \implies a:b = (2x-c) : (2y-c)\\

Put b = ( 2 y c ) a ( 2 x c ) b=\cfrac{(2y-c)a}{(2x-c)} in a + c b + c = x y a = 2 x c = x + ( x c ) \cfrac{a+c}{b+c} = \cfrac{x}{y} \implies a = 2x-c = x + (x-c) and hence b = y + ( y c ) b = y+(y-c)

Ron Gallagher
Mar 5, 2021

Let the two numbers be x and y. We are given:

(x - 4) / (y - 4) = 1/2 (equation 1) and

(x+4) / (y + 4) = 5/6 (equation 2)

Rearranging equation 1 yields 2 x - 8 = y - 4, so that y = 2 x - 4. Substitution into equation 2 gives:

(x + 4) / (2*x) = 5/6, or

6 x + 24 = 10 x. Hence, x = 6 and y = 2*6 - 4 = 8.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...