4 sin ( 2 7 ∘ ) = a + a − b − a
Given that a and b are real number that satisfy the equation above, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Your statement is not clear
From Argand's diagram, we have: cos 7 2 ∘ + cos 1 4 4 ∘ = − 2 1 .
There's a slightly simpler approach.
Hint : Square the equation.
Could you show the solution with squaring the equation?
2 sin 2 2 7 ∘ = 1 − cos 5 4 ∘
Note that cos 5 4 ∘ = 4 1 0 − 2 5 .
Now, we have
1 6 sin 2 2 7 ∘ 4 sin 2 7 ∘ = 8 − 2 1 0 − 2 5 = 8 − 2 1 0 − 2 5 = ( x + y ) − 2 x y = x − y , x > y
By solving both of these equations, x + y = 8 and x y = 1 0 − 2 5 , we get x = 5 + 5 and y = 3 − 5 .
Finally,
4 sin 2 7 ∘ = 5 + 5 − 3 − 5 = a + a − b − b
Hence, a + b = 8
Just use sin(a-b) formula where a=45,b=18. And put values of sin and cos of 18 degrees
Problem Loading...
Note Loading...
Set Loading...
For z 1 0 = 1 ⇒ e 1 0 2 k π i = e 3 6 k ∘ i , are the tenth roots of unity. From Argand's diagram, we have:
cos 7 2 ∘ + cos 1 4 4 ∘ cos 7 2 ∘ + 2 cos 2 7 2 ∘ − 1 2 cos 2 7 2 ∘ + cos 7 2 ∘ − 2 1 = − 2 1 = − 2 1 = 0
⇒ cos 7 2 ∘ ⇒ sin 7 2 ∘ = 4 − 1 + 1 + 4 = 4 5 − 1 = 1 − ( 4 5 − 1 ) 2 = 1 6 1 6 − 6 + 2 5 = 4 1 0 + 2 5
Now we have,
sin 2 7 ∘ = sin ( 7 2 ∘ − 4 5 ∘ ) = 2 1 sin 7 2 ∘ − 2 1 cos 7 2 ∘ = 4 2 1 0 + 2 5 − 4 2 5 − 1 = 4 5 + 5 − 4 2 ( 5 − 1 ) 2 = 4 5 + 5 − 4 2 6 − 2 5 = 4 5 + 5 − 4 3 − 5
⇒ 4 sin 2 7 ∘ ⇒ a + b = 5 + 5 − 3 − 5 = 5 + 3 = 8
In response to the Challenge Master and Konstantinos Michailidis :
From sin 2 7 ∘ = sin ( 7 2 ∘ − 4 5 ∘ ) = 2 1 sin 7 2 ∘ − 2 1 cos 7 2 ∘ , we have:
4 sin 2 7 ∘ ⇒ a + a − b − a ( a + a − b − a ) 2 a + b − 2 ( a + a ) ( b − a ) = 2 2 ( sin 7 2 ∘ − cos 7 2 ∘ ) = 2 2 ( sin 7 2 ∘ − cos 7 2 ∘ ) = 8 ( sin 2 7 2 ∘ − 2 sin 7 2 ∘ cos 7 2 ∘ + cos 2 7 2 ∘ ) = 8 ( 1 − 2 sin 7 2 ∘ cos 7 2 ∘ ) = 8 ( 1 − 1 6 2 1 0 + 2 5 ( 5 − 1 ) ) = 8 − 2 ( 5 + 5 ) ( 5 − 1 ) 2 = 8 − 2 ( 5 + 5 ) 6 − 2 5 = 8 − 2 ( 5 + 5 ) ( 3 − 5 )
⇒ a = 5 , b = 3 and a + b = 8 .