Find the value

Geometry Level 3

4 sin ( 2 7 ) = a + a b a \large{4\sin(27^{\circ})=\sqrt{a+\sqrt{a}}-\sqrt{b-\sqrt{a}}}

Given that a a and b b are real number that satisfy the equation above, find a + b a+b .

9 7 8 None

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 11, 2015

For z 10 = 1 e 2 k π 10 i = e 36 k i z^{10} = 1\quad \Rightarrow e^{\frac{2k\pi}{10}i} = e^{36k^\circ i} , are the tenth roots of unity. From Argand's diagram, we have:

cos 7 2 + cos 14 4 = 1 2 cos 7 2 + 2 cos 2 7 2 1 = 1 2 2 cos 2 7 2 + cos 7 2 1 2 = 0 \begin{aligned} \cos{72^\circ} +\cos{144^\circ} & = - \frac{1}{2} \\ \cos{72^\circ} + 2\cos^2{72^\circ} - 1 & = - \frac{1}{2} \\ 2\cos^2{72^\circ} + \cos{72^\circ} - \frac{1}{2} & = 0 \end{aligned}

cos 7 2 = 1 + 1 + 4 4 = 5 1 4 sin 7 2 = 1 ( 5 1 4 ) 2 = 16 6 + 2 5 16 = 10 + 2 5 4 \begin{aligned} \Rightarrow \cos{72^\circ} & = \frac{-1+ \sqrt{1+4}}{4} = \frac{\sqrt{5}-1}{4} \\ \Rightarrow \sin{72^\circ} & = \sqrt{ 1 - \left(\frac{\sqrt{5}-1}{4}\right)^2} = \sqrt{\frac{16 - 6+2\sqrt{5}}{16}} = \frac {\sqrt{10+2\sqrt{5}}}{4} \end{aligned}

Now we have,

sin 2 7 = sin ( 7 2 4 5 ) = 1 2 sin 7 2 1 2 cos 7 2 = 10 + 2 5 4 2 5 1 4 2 = 5 + 5 4 ( 5 1 ) 2 4 2 = 5 + 5 4 6 2 5 4 2 = 5 + 5 4 3 5 4 \begin{aligned} \sin{27^\circ} & = \sin({72^\circ - 45^\circ}) = \frac{1}{\sqrt{2}} \sin{72^\circ} - \frac{1}{\sqrt{2}} \cos{72^\circ} \\ & = \frac {\sqrt{10+2\sqrt{5}}}{4\sqrt{2}} - \frac{\sqrt{5}-1}{4\sqrt{2}} = \frac {\sqrt{5 +\sqrt{5}}}{4} - \frac{\sqrt{(\sqrt{5}-1)^2}}{4\sqrt{2}} \\ & = \frac {\sqrt{5 + \sqrt{5}} }{4} - \frac{\sqrt{6-2\sqrt{5}}}{4\sqrt{2}} = \frac {\sqrt{5 +\sqrt{5}}}{4} - \frac{\sqrt{3-\sqrt{5}}}{4} \end{aligned}

4 sin 2 7 = 5 + 5 3 5 a + b = 5 + 3 = 8 \begin{aligned} \Rightarrow 4\sin{27^\circ} & = \sqrt{5 +\sqrt{5}} - \sqrt{3-\sqrt{5}} \\ \Rightarrow a + b & = 5 + 3 = \boxed{8} \end{aligned}


In response to the Challenge Master and Konstantinos Michailidis :

From sin 2 7 = sin ( 7 2 4 5 ) = 1 2 sin 7 2 1 2 cos 7 2 \begin{aligned} \sin{27^\circ} & = \sin({72^\circ - 45^\circ}) = \frac{1}{\sqrt{2}} \sin{72^\circ} - \frac{1}{\sqrt{2}} \cos{72^\circ} \end{aligned} , we have:

4 sin 2 7 = 2 2 ( sin 7 2 cos 7 2 ) a + a b a = 2 2 ( sin 7 2 cos 7 2 ) ( a + a b a ) 2 = 8 ( sin 2 7 2 2 sin 7 2 cos 7 2 + cos 2 7 2 ) a + b 2 ( a + a ) ( b a ) = 8 ( 1 2 sin 7 2 cos 7 2 ) = 8 ( 1 2 10 + 2 5 ( 5 1 ) 16 ) = 8 2 ( 5 + 5 ) ( 5 1 ) 2 = 8 2 ( 5 + 5 ) 6 2 5 = 8 2 ( 5 + 5 ) ( 3 5 ) \begin{aligned} 4\sin{27^\circ} & = 2\sqrt{2} ( \sin{72^\circ} - \cos{72^\circ}) \\ \Rightarrow \sqrt{a+\sqrt{a}} - \sqrt{b-\sqrt{a}} & = 2\sqrt{2} ( \sin{72^\circ} - \cos{72^\circ}) \\ \left(\sqrt{a+\sqrt{a}} - \sqrt{b-\sqrt{a}} \right)^2 & = 8 ( \sin^2{72^\circ} - 2 \sin{72^\circ} \cos{72^\circ}+ \cos^2{72^\circ}) \\ a + b - 2\sqrt{(a+\sqrt{a})(b-\sqrt{a})} & = 8(1-2 \sin{72^\circ} \cos{72^\circ}) \\ & = 8\left(1 - \frac{2\sqrt{10+2\sqrt{5}}(\sqrt{5}-1)}{16} \right) \\ & = 8 - \sqrt{2(5+\sqrt{5})}\sqrt{(\sqrt{5}-1)^2} \\ & = 8 - \sqrt{2(5+\sqrt{5})}\sqrt{6-2\sqrt{5}} \\ & = 8 - 2\sqrt{(5+\sqrt{5})(3-\sqrt{5})} \end{aligned}

a = 5 \Rightarrow a = 5 , b = 3 b = 3 and a + b = 8 a+b = \boxed{8} .

Moderator note:

Your statement is not clear

From Argand's diagram, we have: cos 7 2 + cos 14 4 = 1 2 \cos{72^\circ} +\cos{144^\circ} = - \frac{1}{2} .

There's a slightly simpler approach.

Hint : Square the equation.

Could you show the solution with squaring the equation?

Konstantinos Michailidis - 5 years, 11 months ago
Mas Mus
Oct 12, 2015

2 sin 2 2 7 = 1 cos 5 4 \begin{aligned}2\sin^{2}27^{\circ}&=1-\cos54^{\circ} \end{aligned}

Note that cos 5 4 = 10 2 5 4 \cos54^{\circ}=\dfrac{\sqrt{10-2\sqrt{5}}}{4} .

Now, we have

16 sin 2 2 7 = 8 2 10 2 5 4 sin 2 7 = 8 2 10 2 5 = ( x + y ) 2 x y = x y , x > y \begin{aligned}16\sin^{2}27^{\circ}&=8-2\sqrt{10-2\sqrt{5}}\\ 4\sin27^{\circ}&=\sqrt{8-2\sqrt{10-2\sqrt{5}}}=\sqrt{(x+y)-2\sqrt{xy}}=\sqrt{x}-\sqrt{y},~~x>y\end{aligned}

By solving both of these equations, x + y = 8 x+y=8 and x y = 10 2 5 xy=10-2\sqrt{5} , we get x = 5 + 5 x=5+\sqrt{5} and y = 3 5 y=3-\sqrt{5} .

Finally,

4 sin 2 7 = 5 + 5 3 5 = a + a b b 4\sin27^{\circ}=\sqrt{5+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{a+\sqrt{a}}-\sqrt{b-\sqrt{b}}

Hence, a + b = 8 \large{\boxed{a+b=8}}

Aakash Khandelwal
Jul 17, 2015

Just use sin(a-b) formula where a=45,b=18. And put values of sin and cos of 18 degrees

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...