Find the value

Geometry Level 2

cot 3 7 5 + tan 3 7 5 cot 7 5 + tan 7 5 = ? \large \dfrac{\cot^375^{\circ}+\tan^375^{\circ}}{\cot75^{\circ}+\tan75^{\circ}} = \ ?


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Chew-Seong Cheong
Aug 31, 2015

Let t = tan 7 5 t = \tan{75^\circ} , then we have cot 7 5 = 1 t \cot{75^\circ} = \dfrac{1}{t} and:

cot 3 7 5 + tan 3 7 5 cot 7 5 + tan 7 5 = t 3 + 1 t 3 t + 1 t = ( t + 1 t ) ( t 2 1 + 1 t 2 ) t + 1 t = t 2 1 + 1 t 2 = ( t + 1 t ) 2 3 = ( tan 7 5 + 1 tan 7 5 ) 2 3 = ( sin 2 7 5 + cos 2 7 5 sin 7 5 cos 7 5 ) 2 3 = ( 2 sin 15 0 ) 2 3 = ( 2 sin 3 0 ) 2 3 = ( 4 ) 2 3 = 16 3 = 13 \begin{aligned} \frac{\cot^3{75^\circ} + \tan^3{75^\circ}} {\cot{75^\circ} + \tan{75^\circ}} & = \frac{t^3 + \frac{1}{t^3}} {t + \frac{1}{t}} \\ & = \frac{\left(t + \frac{1}{t} \right) \left(t^2 -1 + \frac{1}{t^2}\right)} {t + \frac{1}{t}} \\ & = t^2 -1 + \frac{1}{t^2} \\ & = \left(t +\frac{1}{t}\right)^2 - 3 \\ & = \left(\tan{75^\circ} + \frac{1}{\tan {75 ^ \circ }}\right)^2 - 3 \\ & = \left( \frac{ \sin^2{75^\circ} + \cos^2{75^\circ}} {\sin{75^\circ} \cos{75^\circ}}\right)^2 - 3 \\ & = \left(\frac{2} {\sin{150^\circ}}\right)^2 - 3 \\ & = \left(\frac{2} {\sin{30^\circ}}\right)^2 - 3 \\ & = \left(4\right)^2 - 3 \\ & = 16 - 3 = \boxed{13} \end{aligned}

Moderator note:

Great! This is how I would have solved it.

Note: You might want to prove the trigonometric identity tan ( x ) + cot ( x ) = 2 csc ( 2 x ) \tan(x)+ \cot(x) = 2\csc(2x) separately first.

Using the fact that a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) , a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2}), where in this case a = cot ( 7 5 ) a = \cot(75^{\circ}) and b = tan ( 7 5 ) , b = \tan(75^{\circ}), we see that the given expression can be simplified to

cot 2 ( 7 5 ) cot ( 7 5 ) tan ( 7 5 ) + tan 2 ( 7 5 ) = \cot^{2}(75^{\circ}) - \cot(75^{\circ})\tan(75^{\circ}) + \tan^{2}(75^{\circ}) =

( csc 2 ( 7 5 ) 1 ) 1 + ( sec 2 ( 7 5 ) 1 ) = (\csc^{2}(75^{\circ}) - 1) - 1 + (\sec^{2}(75^{\circ}) - 1) =

1 sin 2 ( 7 5 ) + 1 cos 2 ( 7 5 ) 3 = \dfrac{1}{\sin^{2}(75^{\circ})} + \dfrac{1}{\cos^{2}(75^{\circ})} - 3 =

cos 2 ( 7 5 ) + sin 2 ( 7 5 ) sin 2 ( 7 5 ) cos 2 ( 7 5 ) 3 = \dfrac{\cos^{2}(75^{\circ}) + \sin^{2}(75^{\circ})}{\sin^{2}(75^{\circ})\cos^{2}(75^{\circ})} - 3 =

4 ( 2 sin ( 7 5 ) cos ( 7 5 ) ) 2 3 = \dfrac{4}{(2\sin(75^{\circ})\cos(75^{\circ}))^{2}} - 3 =

4 sin 2 ( 15 0 ) 3 = 4 ( 1 2 ) 2 3 = 4 4 3 = 13 . \dfrac{4}{\sin^{2}(150^{\circ})} - 3 = \dfrac{4}{(\frac{1}{2})^{2}} - 3 = 4*4 - 3 = \boxed{13}.

Observe the expression is factorable.

Ananya Aaniya
Sep 3, 2016

a 3 + b 3 a + b = ( a + b ) ( a 2 a b + b 2 ) ( a + b ) \Large \frac { a^3 +b^3 }{ a+b} \normalsize = \Large \frac{(a+b) * (a^2 - ab + b^2)}{(a+b)} . . . . . . . . . . . . . . . . . [ T a k i n g ................. [ Taking c o t 7 5 = a , t a n 7 5 = b ] cot 75^\circ = a , tan 75^\circ = b ]

= a 2 + b 2 1 = a^2 + b^2 - 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ S i n c e .................................. [ Since a b = c o t 7 5 t a n 7 5 = 1 ] ab = cot 75^\circ * tan 75^\circ = 1 ]

= c o t 2 7 5 + t a n 2 7 5 1 = cot^2 75^\circ + tan^2 75^\circ - 1

= c o t 2 ( 9 0 1 5 ) + t a n 2 7 5 1 = cot^2 (90^\circ - 15^\circ ) + tan^2 75^\circ - 1

= t a n 2 1 5 + t a n 2 7 5 1 = tan^2 15^\circ + tan^2 75^\circ - 1

= s i n 2 1 5 c o s 2 1 5 + s i n 2 7 5 c o s 2 7 5 1 = \Large \frac{sin^2 15^\circ}{cos^2 15^\circ} \normalsize + \Large \frac{sin^2 75^\circ}{cos^2 75^\circ} \normalsize - 1

= s i n 2 1 5 c o s 2 1 5 1 + 1 + s i n 2 ( 9 0 1 5 ) c o s 2 ( 9 0 1 5 ) 1 = \Large \frac{sin^2 15^\circ}{cos^2 15^\circ} \normalsize - 1 + 1 + \Large \frac{sin^2 (90^\circ - 15^\circ )}{cos^2 (90^\circ - 15^\circ )} \normalsize - 1

= 1 { 1 s i n 2 1 5 c o s 2 1 5 } + { c o s 2 1 5 s i n 2 1 5 1 } = 1 - \{ 1 - \Large \frac{sin^2 15^\circ}{cos^2 15^\circ} \normalsize \} + \{ \Large \frac{cos^2 15^\circ}{sin^2 15^\circ} \normalsize - 1 \}

= 1 { c o s 2 1 5 s i n 2 1 5 c o s 2 1 5 } + { c o s 2 1 5 s i n 2 1 5 s i n 2 1 5 } = 1 - \{ \Large \frac{cos^2 15^\circ - sin^2 15^\circ}{cos^2 15^\circ} \normalsize \} + \{ \Large \frac{cos^2 15^\circ - sin^2 15^\circ }{sin^2 15^\circ} \normalsize \}

= 1 { c o s ( 2 1 5 ) c o s 2 1 5 } + { c o s ( 2 1 5 ) s i n 2 1 5 } = 1 - \{ \Large \frac{cos (2 *15^\circ )}{cos^2 15^\circ} \normalsize \} + \{ \Large \frac{cos (2 *15^\circ )}{sin^2 15^\circ} \normalsize \}

= 1 c o s 3 0 c o s 2 1 5 + c o s 3 0 s i n 2 1 5 = 1 - \Large \frac{cos 30^\circ }{cos^2 15^\circ} \normalsize + \Large \frac{cos 30^\circ }{sin^2 15^\circ}

= 1 + c o s 3 0 ( 1 s i n 2 1 5 1 c o s 2 1 5 ) = 1 + cos 30^\circ \Large ( \frac{1 }{sin^2 15^\circ} \normalsize - \Large \frac{1}{cos^2 15^\circ} )

= 1 + c o s 3 0 ( c o s 2 1 5 s i n 2 1 5 s i n 2 1 5 c o s 2 1 5 ) = 1 + cos 30^\circ \Large ( \frac{cos^2 15^\circ - sin^2 15^\circ }{sin^2 15^\circ * cos^2 15^\circ} )

= 1 + c o s 3 0 4 c o s ( 2 1 5 ) 4 s i n 2 1 5 c o s 2 1 5 = 1 + cos 30^\circ * 4 * \Large \frac{cos (2 *15^\circ )}{4 * sin^2 15^\circ * cos^2 15^\circ}

= 1 + c o s 3 0 4 c o s 3 0 s i n 2 ( 2 1 5 ) = 1 + cos 30^\circ * 4 * \Large \frac{cos 30^\circ }{ sin^2 (2*15^\circ)}

= 1 + 4 c o s 2 3 0 s i n 2 3 0 = 1 + 4 * \Large \frac{cos^2 30^\circ }{ sin^2 30^\circ}

= 1 + 4 ( 3 2 ) 2 ( 1 2 ) 2 = 1 + 4 * \Large \frac{ ( \frac{\sqrt{3}}{2} ) ^2 }{ ( \frac{1}{2} ) ^2 }

= 1 + 4 ( 3 4 ) ( 1 4 ) = 1 + 4 * \Large \frac{ ( \frac{3}{4} ) }{ ( \frac{1}{4} ) }

= 1 + 4 3 = 1 + 4 * 3

= 13 = 13

Amed Lolo
Feb 14, 2016

tan75=tan(30+45)=sin(30+45)÷cos(30+45). =((1÷2)×(1÷√2)+(√3÷2)×(1÷√2))÷ ((1÷√2)×(√3÷2)-(1÷√2)×(1÷2))=(√3+1)÷(√3-1). so cot75=(√3-1)÷(√3+1). (cot^3 (75)+tan^3(75))÷(cot75+tan75). =((√3-1)÷(√3+1))^3+((√3+1)÷(√3-1))^3÷ ((√3-1)÷(√3+1))+((√3+1)÷(√3-1)). Put x=√3-1÷√3+1 so 1÷x=√3+1÷√3-1. expression=x^3+(1÷x^3)÷((x)+(1÷x)). x+(1÷x)=((√3-1)÷(√3+1))+((√3+1)÷(√3-1)). =((√3+1)^2+(√3-1)^2)÷((√3-1)×(√3+1)). =(3+1+2√3+3+1-2√3)÷(3-1)=4. (x+(1÷x))^3=x^3+(1÷x)^3+3(x+(1÷x). x^3+(1÷x)^3=64-3×4=52. So. Expression=52÷4=13#######

Hadia Qadir
Sep 7, 2015

irst factor the numerator as a sum of two cubes, and simplify. You'll get the following.

(cot^3(75) + tan^3(75))/(cot(75) + tan(75)) = cot^2(75) -cot(75)tan(75) + tan^2(75) = cot^2(75) -1 + tan^2(75)

Next use the identity tan^2(u) = (1 - cos(2u))/(1 + cos(2u)), where u = 75.

tan^2(75) = (1 - cos(150))/(1 + cos(150)) = (1 + sqrt(3)/2)/(1 - sqrt(3)/2)) = 7 - 4sqrt(3)

cot^2(75) = (tan^2(75))^(-1) = (7 - 4sqrt(3))^(-1) = 7 + 4sqrt(3)

So putting it all together, I get the following.

(cot^3(75) + tan^3(75))/(cot(75) + tan(75)) = 7 + 4sqrt(3) - 1 + 7 - 4 sqrt(3) = 13

Kadayam Eswaran
Sep 5, 2015

tan75=tan(45+30)=(sqrt3+1)/(sqrt3-1)= 2+sqrt3. tan^2 75=7-sqrt3. cot^2 75= 7+sqrt3 LHS=cot^2 75-cot75tan75+ tan^2 75 =7+sqrt3 - 1 +7-sqrt3 =13

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...