Find the value!

Algebra Level 2

6 + 6 + 6 + 6 + 6 + 2 2 2 2 2 = ? \large \sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\cdots}}}}} = \, ?

Hint : Try converting this expression as a quadratic equation.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Jul 5, 2016

Let x= 6 + 6 + 6 + 6 + 6 + . . . 2 2 2 2 2 x 2 = 6 + 6 + 6 + 6 + 6 + 6 + . . . 2 2 2 2 2 x 2 = 6 + x x 2 x 6 = 0 x 2 + 2 x 3 x + 6 = 0 x ( x + 2 ) 3 ( x + 2 ) = 0 ( x 3 ) ( x + 2 ) = 0 x = 3 , x = 2 Here, on starting the expression we have an inequality x > 0 , so the answer is x = 3. As -2 is lesser than 0, it cannot be a solution satisfying the expression. This might me confusing, think a bit more. You have 6 2 . Which is 2.449... So on analyzing the solutions, the value cannot be negative. Therefore x = 3 is a solution. \text{Let x=}\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+...}}}}} \\ \implies x^2 = 6 +\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+...}}}}} \\ \implies x^2 = 6 + x \\ \implies x^2 - x - 6 = 0\\ \implies x^2 + 2x - 3x + 6 = 0 \\ \implies x(x+2) - 3(x+2) = 0 \\ \implies (x-3)(x+2) = 0\\ \implies x = 3, x = -2 \\ \text{Here, on starting the expression we have an inequality } x > 0 \text{, so the answer is x = 3. As -2 is lesser than 0,}\\\text{it cannot be a solution satisfying the expression.} \\ \text{This might me confusing, think a bit more. You have }\sqrt[2]{6} \\ \text{. Which is 2.449... So on analyzing the solutions, the value cannot be negative.}\\ \text{Therefore x = 3 is a solution.}

First off, your method of proving that x = 3 x=3 is not accurate. Note that if x 2 = 9 , x = ± 3 ; x 2 = 4 , x = ± 2 x^2=9,\;x=\pm3;\;x^2=4,\;x=\pm2

I had a discussion with someone else on this matter before. Yes, the answer is 3 3 , but not for the reasons you stated. Refer to Calvin's comment in the solution to this question to know more.

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Yeah. I'll make it clear wait.

Viki Zeta - 4 years, 11 months ago

What about now?

Viki Zeta - 4 years, 11 months ago
Trevor Arashiro
Jul 6, 2016

Let x= a ( a + 1 ) + a ( a + 1 ) + a ( a + 1 ) + a ( a + 1 ) + a ( a + 1 ) + . . . 2 2 2 2 2 \text{Let x=}\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+...}}}}}

Then x = a + 1 x=a+1 .

Note that a number of the form a ( a + 1 ) a(a+1) is the only type of number for which the above is an integer.

Note that,

Let x= a ( a + 1 ) + a ( a + 1 ) + a ( a + 1 ) + a ( a + 1 ) + a ( a + 1 ) + . . . 2 2 2 2 2 x 2 = a ( a + 1 ) + x x 2 x a ( a + 1 ) = 0 x 2 x a 2 a = 0 ( x + a ) ( x a ) ( x + a ) = 0 ( x + a ) ( x a 1 ) = 0 x = a , x = a + 1 So that, -2 is also a solution, but you must explain why only a+1 is a solution. \text{Let x=}\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+\sqrt[2]{a(a+1)+...}}}}} \\ \implies x^2 = a(a+1) + x \\ \implies x^2 - x - a(a+1) = 0 \\ \implies x^2 - x - a^2 - a = 0 \\ \implies (x+a)(x-a) - (x+a) = 0 \\ \implies (x+a)(x-a-1) = 0 \\ \implies x = -a, x = a + 1 \\ \text{So that, -2 is also a solution, but you must explain why only a+1 is a solution.}

Viki Zeta - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...