An algebra problem by Aly Ahmed

Algebra Level 2

A = 1 2 3 + 1 2 6 + 1 2 9 + + 1 2 3 n + , B = log 128 2 \large A = \dfrac 1{2^3} + \dfrac 1{2^6} + \dfrac 1{2^9} + \cdots + \dfrac1{2^{3n}} + \cdots , \quad \quad B = \log_{128} 2

Find B log A 4 B^{\log_A 4} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 10, 2016

A = 1 2 3 + 1 2 6 + 1 2 9 + . . . = 1 8 ( 1 1 1 8 ) = 1 7 \begin{aligned} A & = \frac 1{2^3} + \frac 1{2^6} + \frac 1{2^9} + ... \\ & = \frac 18 \left(\frac 1{1-\frac 18} \right) \\ & = \frac 17 \end{aligned}

B log A 4 = ( log 128 2 ) log 1 7 4 = ( log 128 12 8 1 7 ) log 1 7 4 = ( 1 7 ) log 1 7 4 = 4 \begin{aligned} B^{\log_A 4} & = (\log_{128} 2)^{\log_\frac 17 4} \\ & = (\log_{128} 128^\frac 17)^{\log_\frac 17 4} \\ & = \left(\frac 17\right)^{\log_\frac 17 4} \\ & = \boxed{4} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...