Find the value.

Level pending

Find the square of the value of a + 3 b a 3 b \frac{a+3b}{a-3b} if a b + 9 b a = 7 \frac{a}{b}+\frac{9b}{a}=7 and 0 < a < b 0<a<b .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prasun Biswas
Jan 4, 2014

We use here the identity a 2 + b 2 = ( a + b ) 2 2 a b = ( a b ) 2 + 2 a b a^{2}+b^{2}=(a+b)^{2}-2ab=(a-b)^{2}+2ab . Given here,

a b + 9 b a = 7 \frac{a}{b}+\frac{9b}{a}=7

a 2 + 9 b 2 a b = 7 \implies \frac{a^{2}+9b^{2}}{ab}=7 ....(i)

( a + 3 b ) 2 6 a b a b = 7 \implies \frac{(a+3b)^{2}-6ab}{ab}=7

( a + 3 b ) 2 a b 6 = 7 ( a + 3 b ) 2 a b = 13 ( a + 3 b ) 2 = 13 a b \implies \frac{(a+3b)^{2}}{ab}-6=7 \implies \frac{(a+3b)^{2}}{ab}=13 \implies (a+3b)^{2}=13ab ...(ii)

Also, we can rewrite (i) as,

a 2 + 9 b 2 a b = 7 \implies \frac{a^{2}+9b^{2}}{ab}=7

( a 3 b ) 2 + 6 a b a b = 7 \implies \frac{(a-3b)^{2}+6ab}{ab}=7

( a 3 b ) 2 a b + 6 = 7 ( a 3 b ) 2 a b = 1 ( a 3 b ) 2 = a b \implies \frac{(a-3b)^{2}}{ab}+6=7 \implies \frac{(a-3b)^{2}}{ab}=1 \implies (a-3b)^{2}=ab ...(iii)

From (ii) and (iii), we have,

( a + 3 b a 3 b ) 2 = ( a + 3 b ) 2 ( a 3 b ) 2 = 13 a b a b = 13 (\frac{a+3b}{a-3b})^{2}=\frac{(a+3b)^{2}}{(a-3b)^{2}}=\frac{13ab}{ab} = \boxed{13}

Lorenc Bushi
Dec 30, 2013

a b + 9 b a = a 2 + ( 3 b ) 2 a b = 7 \frac{a}{b}+\frac{9b}{a}=\frac{a^2+(3b)^2}{ab}=7 \rightarrow a 2 + ( 3 b ) 2 = 7 a b a^2+(3b)^2=7ab .Adding 6 a b 6ab to both sides to complete the square and we get : ( a + 3 b ) 2 = 13 a b (a+3b)^2=13ab \rightarrow a + 3 b = 13 a b a+3b=\sqrt{13ab} .Similarly we have : a 2 + ( 3 b ) 2 = 7 a b a^2+(-3b)^2=7ab .Substracting 6 a b 6ab from both sides we get : ( a 3 b ) 2 = a b (a-3b)^2=ab \rightarrow a 3 b = a b a-3b=\sqrt{ab} , therefore a + 3 b a 3 b = 13 a b a b = 13 \frac{a+3b}{a-3b}=\frac{\sqrt{13ab}}{\sqrt{ab}}=\sqrt{13} and by squaring this value we get 13 \boxed{13} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...